作者: V. Haugse , K. H. Karlsen , K.-A. Lie , J. R. Natvig
关键词: Riemann hypothesis 、 Eigenvalues and eigenvectors 、 Discretization 、 Mathematical analysis 、 Piecewise 、 Hyperbolic systems 、 Front (oceanography) 、 Tracking (particle physics) 、 Constant (mathematics) 、 Mathematics 、 Calculus
摘要: The paper describes the application of front tracking to polymer system, an example a nonstrictly hyperbolic system. Front computes piecewise constant approximations based on approximate Riemann solutions and exact waves. It is well known that method may introduce blowup initial total variation for data along curve where two eigenvalues system are identical. demonstrated by numerical examples converges correct solution after finite time, this time decreases with discretization parameter.