Varieties of pairs of nilpotent matrices annihilating each other

作者: Jan Schr�er

DOI: 10.1007/S00014-003-0788-3

关键词: Nilpotent matrixMathematicsDiscrete mathematicsIrreducible componentField (mathematics)Pure mathematics

摘要: We classify the irreducible components of varieties \[ \V(n,a,b) = \{ (A,B) \in \M_n(\field) \times \mid AB BA A^a B^b 0 \}. \]

参考文章(13)
Christine Riedtmann, Degenerations for representations of quivers with relations Annales Scientifiques De L Ecole Normale Superieure. ,vol. 19, pp. 275- 301 ,(1986) , 10.24033/ASENS.1508
Claus Michael Ringel, Tame Algebras and Integral Quadratic Forms ,(1984)
Hanspeter Kraft, Geometric methods in representation theory Springer, Berlin, Heidelberg. pp. 180- 258 ,(1982) , 10.1007/BFB0094059
Henning Krause, Maps between tree and band modules Journal of Algebra. ,vol. 137, pp. 186- 194 ,(1991) , 10.1016/0021-8693(91)90088-P
Murray Gerstenhaber, On Dominance and Varieties of Commuting Matrices The Annals of Mathematics. ,vol. 73, pp. 324- ,(1961) , 10.2307/1970336
M.C.R. Butler, Claus Michael Ringel, Auslander-reiten sequences with few middle terms and applications to string algebrass Communications in Algebra. ,vol. 15, pp. 145- 179 ,(1987) , 10.1080/00927878708823416
NICOLA J. RICHMOND, A Stratification for Varieties of Modules Bulletin of The London Mathematical Society. ,vol. 33, pp. 565- 577 ,(2001) , 10.1112/S0024609301008189
I M Gel'fand, V A Ponomarev, INDECOMPOSABLE REPRESENTATIONS OF THE LORENTZ GROUP Russian Mathematical Surveys. ,vol. 23, pp. 1- 58 ,(1968) , 10.1070/RM1968V023N02ABEH001237
Kent Morrison, The scheme of finite-dimensional representations of an algebra Pacific Journal of Mathematics. ,vol. 91, pp. 199- 218 ,(1980) , 10.2140/PJM.1980.91.199
Birge Zimmermann Huisgen, Predicting syzygies over monomial relations algebras Manuscripta Mathematica. ,vol. 70, pp. 157- 182 ,(1991) , 10.1007/BF02568368