On asymptotic stability of solitary waves for nonlinear Schrödinger equations

作者: Vladimir S. Buslaev , Catherine Sulem

DOI: 10.1016/S0294-1449(02)00018-5

关键词: Partial differential equationSolitonEigenfunctionSchrödinger equationInitial value problemMathematicsMathematical analysisNonlinear systemNonlinear Schrödinger equationRiccati equation

摘要: Abstract We study the long-time behavior of solutions nonlinear Schrodinger equation in one space dimension for initial conditions a small neighborhood stable solitary wave. Under some hypothesis on structure spectrum linearized operator, we prove that, asymptotically time, solution decomposes into wave with slightly modified parameters and dispersive part described by free equation. explicitly calculate time correction.

参考文章(43)
P. A. Deift, A. R. Its, X. Zhou, Long-Time Asymptotics for Integrable Nonlinear Wave Equations Springer, Berlin, Heidelberg. pp. 181- 204 ,(1993) , 10.1007/978-3-642-58045-1_10
W. Rother, Nonlinear scalar field equations Differential and Integral Equations. ,vol. 5, pp. 777- 792 ,(1992)
Arne Jensen, Tosio Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions Duke Mathematical Journal. ,vol. 46, pp. 583- 611 ,(1979) , 10.1215/S0012-7094-79-04631-3
Walter A. Strauss, Nonlinear invariant wave equations Invariant Wave Equations. ,vol. 73, pp. 197- 249 ,(1978) , 10.1007/BFB0032334
Robert L. Pego, Michael I. Weinstein, Asymptotic stability of solitary waves Communications in Mathematical Physics. ,vol. 164, pp. 305- 349 ,(1994) , 10.1007/BF02101705
Michael I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations Communications on Pure and Applied Mathematics. ,vol. 39, pp. 51- 67 ,(1986) , 10.1002/CPA.3160390103
Alexander Komech, Herbert Spohn, Long—time asymptotics for the coupled maxwell—lorentz equations Communications in Partial Differential Equations. ,vol. 25, pp. 559- 584 ,(2000) , 10.1080/03605300008821524
A Soffer, M.I Weinstein, Multichannel nonlinear scattering for nonintegrable equations II. The case of anisotropic potentials and data Journal of Differential Equations. ,vol. 98, pp. 376- 390 ,(1992) , 10.1016/0022-0396(92)90098-8
Alexander Komech, On Transitions to Stationary States in One‐Dimensional Nonlinear Wave Equations Archive for Rational Mechanics and Analysis. ,vol. 149, pp. 213- 228 ,(1999) , 10.1007/S002050050173
Cathleen S. Morawetz, Walter A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation Communications on Pure and Applied Mathematics. ,vol. 25, pp. 1- 31 ,(1972) , 10.1002/CPA.3160250103