Intradiol Dioxygenases — The Key Enzymes in Xenobiotics Degradation

作者: Urszula Guzik , Katarzyna Hupert-Kocurek , Danuta Wojcieszysk

DOI: 10.5772/56205

关键词: XenobioticAromatic amino acidsEnvironmental chemistryLigninThymus vulgarisBioaccumulationAquatic plantAcorus calamusOrganic compoundChemistry

摘要: Aromatic compounds are derived from both natural and anthropogenic sources. Under conditions, arenes formed as a result of the pyrolysis organic materials at high temperatures during forest, steppe peatland fires, volcanic eruptions. Biogenic aromatic like amino acids lignin, second most abundant compound in environment, universally distributed nature. Many species plants, especially willow (Salix), thyme (Thymus vulgaris), camomile (Chamomilla recutita), bean (Phaesoli vulgaris) or strawberry (Fregaria ananasa), water plants sweet flag (Acorus calamus) many alga known to produce secondary metabolites [1-4]. A lot introduced environment contaminating chemical, pharmaceutical, explosive, dyes, agrochemicals industry. Chloro-, aminoand nitroaromatic derivatives, biphenyls, polycyclic hydrocarbons accumulate soil water. They toxic living systems including humans, animals, plants. Moreover, them may bioaccumulate food chain have mutagenic carcinogenic activity [5-8].

参考文章(99)
Izabela Greń, Danuta Wojcieszyńska, Urszula Guzik, Magdalena Perkosz, Katarzyna Hupert-Kocurek, Enhanced biotransformation of mononitrophenols by Stenotrophomonas maltophilia KB2 in the presence of aromatic compounds of plant origin World Journal of Microbiology & Biotechnology. ,vol. 26, pp. 289- 295 ,(2010) , 10.1007/S11274-009-0172-6
Frédéric H. Vaillancourt, Jeffrey T. Bolin, Lindsay D. Eltis, The Ins and Outs of Ring-Cleaving Dioxygenases Critical Reviews in Biochemistry and Molecular Biology. ,vol. 41, pp. 241- 267 ,(2006) , 10.1080/10409230600817422
Y. P. Chen, M. J. Dilworth, A. R. Glenn, Aromatic metabolism in Rhizobium trifolii - protocatechuate 3,4-dioxygenase Archives of Microbiology. ,vol. 138, pp. 187- 190 ,(1984) , 10.1007/BF00402117
P. Pitter, Correlation of Microbial Degradation Rates with the Chemical Structure Acta Hydrochimica Et Hydrobiologica. ,vol. 13, pp. 453- 460 ,(1985) , 10.1002/AHEH.19850130408
Emmanuel Vijay Paul Pandeeti, Dayananda Siddavattam, Purification and Characterization of Catechol 1,2-Dioxygenase from Acinetobacter sp. DS002 and Cloning, Sequencing of Partial catA Gene Indian Journal of Microbiology. ,vol. 51, pp. 312- 318 ,(2011) , 10.1007/S12088-011-0123-4
Ching T. Hou, Marjorie O. Lillard, Robert D. Schwartz, Protocatechuate 3, 4-dioxygenase from Acinetobacter calcoaceticus. Biochemistry. ,vol. 15, pp. 582- 588 ,(1976) , 10.1021/BI00648A020
Olga Zaborina, Hans-Jürgen Seitz, Igor Sidorov, Jürgen Eperspächer, Elena Alexeeva, Ludmila Golovleva, Franz Lingens, INHIBITION ANALYSIS OF HYDROXYQUINOL-CLEAVING DIOXYGENASES FROM THE CHLOROPHENOL-DEGRADING AZOTOBACTER SP. GP1 AND STREPTOMYCES ROCHEI 303 Journal of Basic Microbiology. ,vol. 39, pp. 61- 73 ,(1999) , 10.1002/(SICI)1521-4028(199903)39:1<61::AID-JOBM61>3.0.CO;2-Z
G. Sauret-Ignazi, Jean Gagnon, Claude Béguin, Michel Barrelle, Yves Markowicz, Jean Pelmont, Ariane Toussaint, Characterisation of a chromosomally encoded catechol 1,2-dioxygenase (E.C. 1.13.11.1) from Alcaligenes eutrophus CH34 Archives of Microbiology. ,vol. 166, pp. 42- 50 ,(1996) , 10.1007/S002030050353
Urszula Guzik, Katarzyna Hupert-Kocurek, Karina Sałek, Danuta Wojcieszyńska, Influence of metal ions on bioremediation activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2. World Journal of Microbiology & Biotechnology. ,vol. 29, pp. 267- 273 ,(2013) , 10.1007/S11274-012-1178-Z