Affecting factors, equilibrium, kinetics and thermodynamics of bromide removal from aqueous solutions by MIEX resin

作者: Lei Ding , Huiping Deng , Chao Wu , Xu Han

DOI: 10.1016/J.CEJ.2011.11.096

关键词: Inorganic chemistryExothermic processAdsorptionChemistryBromideSorptionRate-determining stepLangmuirAqueous solutionFreundlich equation

摘要: Abstract It is necessary to remove bromide from raw water owing the fact that directly leads brominated disinfection byproducts during process for drinking water. The adsorption characteristics of by MIEX resin are investigated in a batch mode. Some factors such as initial concentration, contact time, adsorbent dosage, pH solution and coexistent anions, have significant effect on removal. Five isotherm models, namely, Langmuir, Freundlich, Temkin, Dubinin–Radushkevich Redlich–Peterson, used fit equilibrium data at 303 K. results show can be well fitted Freundlich Redlich–Peterson models. pseudo first-order second-order kinetics models resin. demonstrate agree with model, indicating chemical sorption. intra-particle diffusion model further analyze mechanism process. imply not only rate limiting step. negative Δ G ° values indicate thermodynamically feasible spontaneous H S an exothermic nature randomness degree solid/liquid interface decreases after adsorption.

参考文章(55)
Izabela Kowalska, Usuwanie anionowych substancji powierzchniowo czynnych w procesie wymiany jonowej Ochrona Srodowiska. ,vol. 31, pp. 25- 29 ,(2009)
Mohamed Siddiqui, Gary Amy, Kenan Ozekin, Paul Westerhoff, MODELING DISSOLVED OZONE AND BROMATE ION FORMATION IN OZONE CONTACTORS Water Air and Soil Pollution. ,vol. 108, pp. 1- 32 ,(1998) , 10.1023/A:1005025115868
Hugues Humbert, Hervé Gallard, Hervé Suty, Jean-Philippe Croué, Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC) Water Research. ,vol. 42, pp. 1635- 1643 ,(2008) , 10.1016/J.WATRES.2007.10.012
Mary Drikas, Mike Dixon, Jim Morran, Long term case study of MIEX pre-treatment in drinking water; understanding NOM removal Water Research. ,vol. 45, pp. 1539- 1548 ,(2011) , 10.1016/J.WATRES.2010.11.024
Liang Ding, Qin Li, Hao Cui, Rong Tang, Hui Xu, Xianchuan Xie, Jianping Zhai, Electrocatalytic reduction of bromate ion using a polyaniline-modified electrode: An efficient and green technology for the removal of BrO3− in aqueous solutions Electrochimica Acta. ,vol. 55, pp. 8471- 8475 ,(2010) , 10.1016/J.ELECTACTA.2010.07.062
M.A. Rauf, S.B. Bukallah, F.A. Hamour, A.S. Nasir, Adsorption of dyes from aqueous solutions onto sand and their kinetic behavior Chemical Engineering Journal. ,vol. 137, pp. 238- 243 ,(2008) , 10.1016/J.CEJ.2007.04.025
Fei Ge, Lizhong Zhu, Effects of coexisting anions on removal of bromide in drinking water by coagulation. Journal of Hazardous Materials. ,vol. 151, pp. 676- 681 ,(2008) , 10.1016/J.JHAZMAT.2007.06.041
Cristina García Hernández, Rafael J. Garcia-Villanova, M. Vilani Oliveira Dantas Leite, J. Miguel Hernández Hierro, Santiago de Castro Alfageme, Occurrence of bromate, chlorite and chlorate in drinking waters disinfected with hypochlorite reagents. Tracing their origins Science of The Total Environment. ,vol. 408, pp. 2616- 2620 ,(2010) , 10.1016/J.SCITOTENV.2010.03.011
K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems Chemical Engineering Journal. ,vol. 156, pp. 2- 10 ,(2010) , 10.1016/J.CEJ.2009.09.013