A Survey of Bayesian Calibration and Physics-informed Neural Networks in Scientific Modeling

作者: Felipe A. C. Viana , Arun K. Subramaniyan

DOI: 10.1007/S11831-021-09539-0

关键词: Scientific modellingPhysical systemMachine learningImplementationField (computer science)SoftwareArtificial neural networkArtificial intelligenceFlexibility (engineering)Calibration (statistics)

摘要: … Secondly, we also survey physics-informed neural networks, a … physics-informed neural networks can be built to quantify model-form uncertainty in the prediction of corrosion-fatigue …

参考文章(253)
Dirk Husmeier, Frank Dondelinger, Maurizio Filippone, Simon Rogers, ODE parameter inference using adaptive gradient matching with Gaussian processes international conference on artificial intelligence and statistics. pp. 216- 228 ,(2013)
Ming-Hui Chen, Dipak K. Dey, Peter Müller, Dongchu Sun, Keying Ye, Bayesian Inference for Complex Computer Models Springer, New York, NY. pp. 157- 184 ,(2010) , 10.1007/978-1-4419-6944-6_5
Yali Wang, David Barber, Gaussian Processes for Bayesian Estimation in Ordinary Differential Equations international conference on machine learning. pp. 1485- 1493 ,(2014)
Anne-Wil Harzing, Publish or Perish ,(2007)
Thore Graepel, Solving noisy linear operator equations by Gaussian processes: application to ordinary and partial differential equations international conference on machine learning. pp. 234- 241 ,(2003)
Peter J. Green, Krzysztof Łatuszyński, Marcelo Pereyra, Christian P. Robert, Bayesian computation: a summary of the current state, and samples backwards and forwards Statistics and Computing. ,vol. 25, pp. 835- 862 ,(2015) , 10.1007/S11222-015-9574-5