Majorization–minimization generalized Krylov subspace methods for $${\ell _p}$$–$${\ell _q}$$ℓq optimization applied to image restoration

作者: G. Huang , A. Lanza , S. Morigi , L. Reichel , F. Sgallari

DOI: 10.1007/S10543-016-0643-8

关键词: Convergence (routing)Applied mathematicsMathematical optimizationStationary pointKrylov subspaceMajorization minimizationRegular polygonImage restorationMathematics

摘要: A new majorization–minimization framework for \(\ell _p\)–\(\ell _q\) image restoration is presented. The solution sought in a generalized Krylov subspace that build up during the process. Proof of convergence to stationary point minimized functional provided both convex and nonconvex problems. Computed examples illustrate high-quality restorations can be determined with modest number iterations storage requirement method not very large. comparison related methods shows competitiveness proposed.

参考文章(26)
Raymond H. Chan, Hai-Xia Liang, Half-Quadratic Algorithm for $$\ell _p$$ - $$\ell _q$$ Problems with Applications to TV- $$\ell _1$$ Image Restoration and Compressive Sensing Efficient Algorithms for Global Optimization Methods in Computer Vision. pp. 78- 103 ,(2014) , 10.1007/978-3-642-54774-4_4
R. Horst, N. V. Thoai, DC programming: overview Journal of Optimization Theory and Applications. ,vol. 103, pp. 1- 43 ,(1999) , 10.1023/A:1021765131316
Lea Laporte, Remi Flamary, Stephane Canu, Sebastien Dejean, Josiane Mothe, Nonconvex Regularizations for Feature Selection in Ranking With Sparse SVM IEEE Transactions on Neural Networks. ,vol. 25, pp. 1118- 1130 ,(2014) , 10.1109/TNNLS.2013.2286696
A. Lanza, S. Morigi, L. Reichel, F. Sgallari, A Generalized Krylov Subspace Method for $\ell_p$-$\ell_q$ Minimization SIAM Journal on Scientific Computing. ,vol. 37, ,(2015) , 10.1137/140967982
Mila Nikolova, Raymond H. Chan, The Equivalence of Half-Quadratic Minimization and the Gradient Linearization Iteration IEEE Transactions on Image Processing. ,vol. 16, pp. 1623- 1627 ,(2007) , 10.1109/TIP.2007.896622
Yun-Bin Zhao, Duan Li, Reweighted $\ell_1$-Minimization for Sparse Solutions to Underdetermined Linear Systems Siam Journal on Optimization. ,vol. 22, pp. 1065- 1088 ,(2012) , 10.1137/110847445
Per Christian Hansen, Regularization Tools version 4.0 for Matlab 7.3 Numerical Algorithms. ,vol. 46, pp. 189- 194 ,(2007) , 10.1007/S11075-007-9136-9
Jörg Lampe, Lothar Reichel, Heinrich Voss, Large-scale Tikhonov regularization via reduction by orthogonal projection Linear Algebra and its Applications. ,vol. 436, pp. 2845- 2865 ,(2012) , 10.1016/J.LAA.2011.07.019
Harald Birkholz, A unifying approach to isotropic and anisotropic total variation denoising models Journal of Computational and Applied Mathematics. ,vol. 235, pp. 2502- 2514 ,(2011) , 10.1016/J.CAM.2010.11.003
R. Wolke, H. Schwetlick, Iteratively Reweighted Least Squares: Algorithms, Convergence Analysis, and Numerical Comparisons SIAM Journal on Scientific and Statistical Computing. ,vol. 9, pp. 907- 921 ,(1988) , 10.1137/0909062