The work of T. Kawai on exact WKB analysis

作者: Yoshitsugu Takei

DOI: 10.1007/978-4-431-73240-2_4

关键词: Mathematical physicsWKB approximationMathematicsIsomonodromic deformationWork (thermodynamics)Microlocal analysis

摘要:

参考文章(9)
A. Voros, The return of the quartic oscillator. The complex WKB method Annales De L Institut Henri Poincare-physique Theorique. ,vol. 39, pp. 211- 338 ,(1983)
J. Zinn‐Justin, Instantons in quantum mechanics: Numerical evidence for a conjecture Journal of Mathematical Physics. ,vol. 25, pp. 549- 555 ,(1984) , 10.1063/1.526205
Michio Jimbo, Tetsuji Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III Physica D: Nonlinear Phenomena. ,vol. 4, pp. 26- 46 ,(1981) , 10.1016/0167-2789(81)90003-8
H. L. Berk, William McCay Nevins, K. V. Roberts, New Stokes’ line in WKB theory Journal of Mathematical Physics. ,vol. 23, pp. 988- 1002 ,(1982) , 10.1063/1.525467
H. Dillinger, E. Delabaere, Frédéric Pham, Résurgence de Voros et périodes des courbes hyperelliptiques Annales de l'Institut Fourier. ,vol. 43, pp. 163- 199 ,(1993) , 10.5802/AIF.1326
Carl M. Bender, Tai Tsun Wu, Anharmonic Oscillator. II. A Study of Perturbation Theory in Large Order Physical Review D. ,vol. 7, pp. 1620- 1636 ,(1973) , 10.1103/PHYSREVD.7.1620
F. Pham, Resurgence, Quantized Canonical Transformations, and Multi-lnstanton Expansions* Algebraic Analysis#R##N#Papers Dedicated to Professor Mikio Sato on the Occasion of his Sixtieth Birthday, Volume 2. pp. 699- 726 ,(1988) , 10.1016/B978-0-12-400466-5.50021-4
Carl M. Bender, Tai Tsun Wu, Anharmonic Oscillator Physical Review. ,vol. 184, pp. 1231- 1260 ,(None) , 10.1103/PHYSREV.184.1231