Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes.

作者: Jinlong Yang , Wei Hu , Lin Lin , Chao Yang

DOI: 10.1063/1.4902806

关键词:

摘要: With the help of recently developed SIESTA-pole (Spanish Initiative for Electronic Simulations with Thousands Atoms) - PEXSI (pole expansion and selected inversion) method [L. Lin, A. Garcia, G. Huhs, C. Yang, J. Phys.: Condens. Matter 26, 305503 (2014)], we perform Kohn-Sham density functional theory calculations to study stability electronic structure hydrogen passivated hexagonal graphene nanoflakes (GNFs) up 11 700 atoms. We find properties GNFs, including their cohesive energy, edge formation highest occupied molecular orbital-lowest unoccupied orbital energy gap, states, aromaticity, depend sensitively on type edges (armchair (ACGNFs) zigzag (ZZGNFs)), size number electrons. observe that, due edge-induced strain effect in ACGNFs, large-scale ACGNFs’ decreases as increases. This trend does not hold ZZGNFs presence many states ZZGNFs. that gaps E g GNFs all decay respect 1/L, where L is GNF, a linear fashion. But increases, exhibit more localized states. believe these makes gap decrease rapidly. In particular, when larger than 6.40 nm, metallic characteristics. Furthermore, aromatic structures appear only whether system has 4N or + 2 electrons, N an integer. © 2014 AIP Publishing LLC .[ http://dx.doi.org/10.1063/1.4902806]

参考文章(59)
A. Kuc, T. Heine, G. Seifert, Structural and electronic properties of graphene nanoflakes Physical Review B. ,vol. 81, pp. 085430- ,(2010) , 10.1103/PHYSREVB.81.085430
Eric Clar, The aromatic sextet ,(1972)
Tobias Wassmann, Ari P. Seitsonen, A. Marco Saitta, Michele Lazzeri, Francesco Mauri, Clar's Theory, STM Images, and Geometry of Graphene Nanoribbons arXiv: Materials Science. ,(2010) , 10.1021/JA909234Y
Chenggang Tao, Liying Jiao, Oleg V. Yazyev, Yen-Chia Chen, Juanjuan Feng, Xiaowei Zhang, Rodrigo B. Capaz, James M. Tour, Alex Zettl, Steven G. Louie, Hongjie Dai, Michael F. Crommie, Spatially resolving edge states of chiral graphene nanoribbons Nature Physics. ,vol. 7, pp. 616- 620 ,(2011) , 10.1038/NPHYS1991
Nai Gui Shang, Pagona Papakonstantinou, Martin McMullan, Ming Chu, Artemis Stamboulis, Alessandro Potenza, Sarnjeet S. Dhesi, Helder Marchetto, Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes** Advanced Functional Materials. ,vol. 18, pp. 3506- 3514 ,(2008) , 10.1002/ADFM.200800951
Yungang Zhou, Zhiguo Wang, Ping Yang, Xin Sun, Xiaotao Zu, Fei Gao, Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal Transition and Remarkable Large Magnetism Journal of Physical Chemistry C. ,vol. 116, pp. 5531- 5537 ,(2012) , 10.1021/JP300164B
Z. Z. Zhang, Kai Chang, F. M. Peeters, Tuning of energy levels and optical properties of graphene quantum dots Physical Review B. ,vol. 77, pp. 235411- ,(2008) , 10.1103/PHYSREVB.77.235411
M. Wimmer, A. R. Akhmerov, F. Guinea, Robustness of edge states in graphene quantum dots Physical Review B. ,vol. 82, pp. 045409- ,(2010) , 10.1103/PHYSREVB.82.045409
Li Yang, Cheol-Hwan Park, Young-Woo Son, Marvin L. Cohen, Steven G. Louie, Quasiparticle energies and band gaps in graphene nanoribbons. Physical Review Letters. ,vol. 99, pp. 186801- ,(2007) , 10.1103/PHYSREVLETT.99.186801
John P. Perdew, Kieron Burke, Matthias Ernzerhof, Generalized Gradient Approximation Made Simple Physical Review Letters. ,vol. 77, pp. 3865- 3868 ,(1996) , 10.1103/PHYSREVLETT.77.3865