On measuring the variability of small area estimators under a basic area level model

作者: Gauri Sankar Datta , J. N. K. Rao , David Daniel Smith

DOI: 10.1093/BIOMET/92.1.183

关键词:

摘要: SUMMARY In this paper based on a basic area level model we obtain second-order accurate approxi mations to the mean squared error of model-based small estimators, using Fay & Herriot (1979) iterative method estimating variance weighted residual sum squares. We also estimators unbiased second order. Based simulations, compare finite-sample performance our with those method-of-moments, maximum likelihood and variance. Our results suggest that Fay-Herriot performs better, in terms relative bias than other methods across different combinations number areas, pattern sampling variances distribution effects. derive noninformative prior parameters for which posterior is error. The such possesses both Bayesian frequentist interpretations.

参考文章(23)
Jayanta Kumar Ghosh, Higher order asymptotics ,(1994)
Jin-Mann S. Lin, Small Area Estimation ,(2003)
Carl N. Morris, Parametric Empirical Bayes Confidence Intervals Scientific Inference, Data Analysis, and Robustness#R##N#Proceedings of a Conference Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, November 4–6, 1981. pp. 25- 50 ,(1983) , 10.1016/B978-0-12-121160-8.50008-9
Rahul Mukerjee, Gauri Sankar Datta, Probability Matching Priors: Higher Order Asymptotics ,(2004)
P. Lahiri, J. N. K. Rao, Robust Estimation of Mean Squared Error of Small Area Estimators Journal of the American Statistical Association. ,vol. 90, pp. 758- 766 ,(1995) , 10.1080/01621459.1995.10476570
David A. Harville, Decomposition of Prediction Error Journal of the American Statistical Association. ,vol. 80, pp. 132- 138 ,(1985) , 10.1080/01621459.1985.10477152
Carl N. Morris, Parametric Empirical Bayes Inference: Theory and Applications Journal of the American Statistical Association. ,vol. 78, pp. 47- 55 ,(1983) , 10.1080/01621459.1983.10477920