Classification of Multi-Frequency Polarimetric SAR Images Based on Multi-Linear Subspace Learning of Tensor Objects

作者: Chun Liu , Junjun Yin , Jian Yang , Wei Gao

DOI: 10.3390/RS70709253

关键词:

摘要: One key problem for the classification of multi-frequency polarimetric SAR images is to extract target features simultaneously in aspects frequency, polarization and spatial texture. This paper proposes a new method data based on tensor representation multi-linear subspace learning (MLS). Firstly, each cell represented by third-order domains, with order corresponding one domain. Then, two main MLS methods, i.e., principal component analysis (MPCA) extension linear discriminant (MLDA), are used learn tensors. MPCA analyze MLDA applied improve discrimination between different land covers. Finally, lower dimension subtensor extracted algorithms classified neural network (NN) classifier. The scheme accessed using multi-band (C-, L- P-band) acquired Airborne Synthetic Aperture Radar (AIRSAR) sensor Jet Propulsion Laboratory (JPL) over Flevoland area. Experimental results demonstrate that proposed has good performance comparison classic Wishart overall accuracy close 99%, even when number training samples small.

参考文章(22)
M.R. Azimi-Sadjadi, S. Ghaloum, R. Zoughi, Terrain classification in SAR images using principal components analysis and neural networks IEEE Transactions on Geoscience and Remote Sensing. ,vol. 31, pp. 511- 515 ,(1993) , 10.1109/36.214928
J. S. LEE, M. R. GRUNES, R. KWOK, Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution International Journal of Remote Sensing. ,vol. 15, pp. 2299- 2311 ,(1994) , 10.1080/01431169408954244
L. Ferro-Famil, E. Pottier, Jong-Sen Lee, Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier IEEE Transactions on Geoscience and Remote Sensing. ,vol. 39, pp. 2332- 2342 ,(2001) , 10.1109/36.964969
Lieven De Lathauwer, Bart De Moor, Joos Vandewalle, On the Best Rank-1 and Rank-(R1 ,R2 ,. . .,RN) Approximation of Higher-Order Tensors SIAM Journal on Matrix Analysis and Applications. ,vol. 21, pp. 1324- 1342 ,(2000) , 10.1137/S0895479898346995
Tamara G. Kolda, Brett W. Bader, Tensor Decompositions and Applications Siam Review. ,vol. 51, pp. 455- 500 ,(2009) , 10.1137/07070111X
A. FREEMAN, J. VILLASENOR, J. D. KLEIN, P. HOOGEBOOM, J. GROOT, On the use of multi-frequency and polarimetric radar backscatter features for classification of agricultural crops International Journal of Remote Sensing. ,vol. 15, pp. 1799- 1812 ,(1994) , 10.1080/01431169408954210
Wei Gao, Jian Yang, Wenting Ma, Land Cover Classification for Polarimetric SAR Images Based on Mixture Models Remote Sensing. ,vol. 6, pp. 3770- 3790 ,(2014) , 10.3390/RS6053770
V.V. Chamundeeswari, D. Singh, K. Singh, An Analysis of Texture Measures in PCA-Based Unsupervised Classification of SAR Images IEEE Geoscience and Remote Sensing Letters. ,vol. 6, pp. 214- 218 ,(2009) , 10.1109/LGRS.2008.2009954
Jong-Sen Lee, K. Hoppel, Principal Components Transformation Of Multi-frequency Polarimetric Sar Imagery international geoscience and remote sensing symposium. ,vol. 4, pp. 2161- 2164 ,(1991) , 10.1109/IGARSS.1991.575468
J.-S. Lee, M.R. Grunes, S.A. Mango, Speckle reduction in multipolarization, multifrequency SAR imagery IEEE Transactions on Geoscience and Remote Sensing. ,vol. 29, pp. 535- 544 ,(1991) , 10.1109/36.135815