Quantum‐mechanical derivation of the Bloch equations: Beyond the weak‐coupling limit

作者: Brian B. Laird , Jane Budimir , James L. Skinner

DOI: 10.1063/1.460626

关键词:

摘要: … equations for the level populations, which, as mentioned in the introduction, form the simplest possible twocomponent master equation. … satisfied by the master equation with these fourth-…

参考文章(29)
Robin M. Hochstrasser, V. M. Agranovich, Spectroscopy and Excitation Dynamics of Condensed Molecular Systems ,(1983)
Leon Van Hove, The approach to equilibrium in quantum statistics Physica. ,vol. 23, pp. 441- 480 ,(1957) , 10.1016/S0031-8914(57)92891-4
Irwin Oppenheim, Kurt Egon Shuler, George H. Weiss, Stochastic Processes in Chemical Physics: The Master Equation ,(1977)
W. Ludwig, B. Fain: Theory of Rate Processes in Condensed Media. Springer Verlag, Berlin, Heidelberg 1980. 166 Seiten, Preis: DM 29,60. Berichte der Bunsengesellschaft für physikalische Chemie. ,vol. 86, pp. 268- 268 ,(1982) , 10.1002/BBPC.19820860331
N.G. Van Kampen, A cumulant expansion for stochastic linear differential equations. I Physica D: Nonlinear Phenomena. ,vol. 74, pp. 215- 238 ,(1974) , 10.1016/0031-8914(74)90121-9
Robert Silbey, Robert A. Harris, Tunneling of molecules in low-temperature media: an elementary description The Journal of Physical Chemistry. ,vol. 93, pp. 7062- 7071 ,(1989) , 10.1021/J100357A010
Brian B. Laird, James L. Skinner, T2 can be greater than 2T1 even at finite temperature The Journal of Chemical Physics. ,vol. 94, pp. 4405- 4410 ,(1991) , 10.1063/1.460627
J. Budimir, J. L. Skinner, On the relationship between T 1 and T 2 for stochastic relaxation models Journal of Statistical Physics. ,vol. 49, pp. 1029- 1042 ,(1987) , 10.1007/BF01017558