The exposure of the Great Barrier Reef to ocean acidification

作者: Mathieu Mongin , Mark E. Baird , Bronte Tilbrook , Richard J. Matear , Andrew Lenton

DOI: 10.1038/NCOMMS10732

关键词:

摘要: The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification lowering the aragonite saturation state of seawater (Ωa). downscaling projections from global to GBR scales requires set regional drivers controlling Ωa be resolved. Here we use a coupled circulation–biogeochemical model and observations estimate experienced by 3,581 reefs GBR, apportion contributions hydrological cycle, hydrodynamics metabolism variability. We find more detail, greater range (1.43), than previously compiled coarse maps region (0.4), or in (1.0). Most variability due processes upstream reef question. As result, future decline likely steeper currently projected IPCC assessment report. oceans become acidic, corals are threatened, generating need understand driving forces chemical Reef. Here, authors show spatial reported, created interaction circulation.

参考文章(47)
O. Hoegh-Guldberg, D. N. Schmidt, J. A. Kleypas, J. P. Gattuso, P. G. Brewer, H. O. Pörtner, Cross-chapter box on ocean acidification EPIC3Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, pp. 129-131, ISBN: 9781107641655. ,(2014)
R. M. Key, A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. L. Bullister, R. A. Feely, F. J. Millero, C. Mordy, T.-H. Peng, A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) Global Biogeochemical Cycles. ,vol. 18, pp. 1- 23 ,(2004) , 10.1029/2004GB002247
Miles Furnas, Catchments and Corals: Terrestrial Runoff to the Great Barrier Reef Australian Institute of Marine Science & CRC Reef Research Centre. ,(2003)
Mark E. Baird, Peter J. Ralph, Farhan Rizwi, Karen Wild-Allen, Andrew D. L. Steven, A dynamic model of the cellular carbon to chlorophyll ratio applied to a batch culture and a continental shelf ecosystem Limnology and Oceanography. ,vol. 58, pp. 1215- 1226 ,(2013) , 10.4319/LO.2013.58.4.1215
Nancy E. Monsen, James E. Cloern, Lisa V. Lucas, Stephen G. Monismith, A comment on the use of flushing time, residence time, and age as transport time scales Limnology and Oceanography. ,vol. 47, pp. 1545- 1553 ,(2002) , 10.4319/LO.2002.47.5.1545
K L Ricke, J C Orr, K Schneider, K Caldeira, Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections Environmental Research Letters. ,vol. 8, pp. 034003- ,(2013) , 10.1088/1748-9326/8/3/034003
M. Herzfeld, P.A. Gillibrand, Active open boundary forcing using dual relaxation time-scales in downscaled ocean models Ocean Modelling. ,vol. 89, pp. 71- 83 ,(2015) , 10.1016/J.OCEMOD.2015.02.004
Emily C. Shaw, Ben I. McNeil, Bronte Tilbrook, Impacts of ocean acidification in naturally variable coral reef flat ecosystems Journal of Geophysical Research. ,vol. 117, pp. 1- 14 ,(2012) , 10.1029/2011JC007655
Kenneth R. N. Anthony, Joan A. Kleypas, Jean-Pierre Gattuso, Coral reefs modify their seawater carbon chemistry – implications for impacts of ocean acidification Global Change Biology. ,vol. 17, pp. 3655- 3666 ,(2011) , 10.1111/J.1365-2486.2011.02510.X
N. Margvelashvili, F. Saint-Cast, S. Condie, Numerical modelling of the suspended sediment transport in Torres Strait computer science symposium in russia. ,vol. 28, pp. 2241- 2256 ,(2008) , 10.1016/J.CSR.2008.03.037