Extended rotation and scaling groups for nonlinear evolution equations

作者: P. G. Estevez , C. Qu

DOI: 10.1023/A:1026052622703

关键词:

摘要: A (1+1)-dimensional nonlinear evolution equation is invariant under the rotation group if it infinitesimal generator V = x∂ u  − u∂ x . Then solution satisfies condition u x = −x/u. For equations that do not admit group, we provide an extension of group. The corresponding exact can be constructed via set R 0 = {u: u x = xF(u)} a contact first-order differential structure, where F smooth function to determined. time on R 0 shown governed by dynamical system. We introduce scaling groups characterized $$\tilde S_0 $$ depends two constants ∈ and n ≠ 1. When ∈ = 0, reduces S 0 introduced Galaktionov. also generalization both groups, which described E 0 with parameters b. a = 0 or b = 0, respectively S 0. These approaches are used obtain solutions reductions systems equations.

参考文章(6)
Victor A. Galaktionov, Quasilinear heat equations with first-order sign-invariants and new explicit solutions Nonlinear Analysis-theory Methods & Applications. ,vol. 23, pp. 1595- 1621 ,(1994) , 10.1016/0362-546X(94)90208-9
Peter A. Clarkson, Martin D. Kruskal, New similarity reductions of the Boussinesq equation Journal of Mathematical Physics. ,vol. 30, pp. 2201- 2213 ,(1989) , 10.1063/1.528613
A. S. Fokas, Q. M. Liu, Nonlinear interaction of traveling waves of nonintegrable equations. Physical Review Letters. ,vol. 72, pp. 3293- 3296 ,(1994) , 10.1103/PHYSREVLETT.72.3293
Peter J. Olver, Philip Rosenau, The construction of special solutions to partial differential equations Physics Letters A. ,vol. 114, pp. 107- 112 ,(1986) , 10.1016/0375-9601(86)90534-7
Victor A. Galaktionov, Groups of scalings and invariant sets for higher-order nonlinear evolution equations Differential and Integral Equations. ,vol. 14, pp. 913- 924 ,(2001)
George W. Bluman, Sukeyuki Kumei, Symmetries and differential equations ,(1989)