Exploring Positional Linear Go

作者: Noah Weninger , Ryan Hayward

DOI: 10.1007/978-3-319-71649-7_9

关键词:

摘要: Linear Go is the game of played on 1 \(\times \) \(n\) board. Positional with a rule set that uses positional superko. We explore game-theoretic properties Go, and incorporate them into solver based MTD(f) search, solving states boards up to \(9\).

参考文章(9)
Hermann Kaindl, Helmut Horacek, Reza Shams, Using aspiration windows for minimax algorithms international joint conference on artificial intelligence. pp. 192- 197 ,(1991)
Akihiro Kishimoto, Correct and efficient search algorithms in the presence of repetitions University of Alberta. ,(2005)
Erik C.D. van der Werf, Mark H.M. Winands, Solving Go for Rectangular Boards ICGA Journal. ,vol. 32, pp. 77- 88 ,(2009) , 10.3233/ICG-2009-32203
Erik C. D. van der Werf, H. Jaap van den Herik, Jos W. H. M. Uiterwijk, Solving Go on small boards ICGA Journal. ,vol. 26, pp. 92- 107 ,(2003) , 10.3233/ICG-2003-26205
Aske Plaat, Jonathan Schaeffer, Wim Pijls, Arie de Bruin, Best-first fixed-depth minimax algorithms Artificial Intelligence. ,vol. 87, pp. 255- 293 ,(1996) , 10.1016/0004-3702(95)00126-3
Akihiro Kishimoto, Martin Müller, A general solution to the graph history interaction problem national conference on artificial intelligence. pp. 644- 649 ,(2004)
Erik van der Werf, AI techniques for the game of Go Datawyse / Universitaire Pers Maastricht. ,(2001)
David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, Demis Hassabis, None, Mastering the game of Go with deep neural networks and tree search Nature. ,vol. 529, pp. 484- 489 ,(2016) , 10.1038/NATURE16961
John Tromp, The Number of Legal Go Positions annual conference on computers. pp. 183- 190 ,(2016) , 10.1007/978-3-319-50935-8_17