Towards subspace clustering on dynamic data: an incremental version of PreDeCon

作者: Hans-Peter Kriegel , Peer Kröger , Irene Ntoutsi , Arthur Zimek

DOI: 10.1145/1833280.1833285

关键词:

摘要: Todays data are high dimensional and dynamic, thus clustering over such kind of is rather complicated. To deal with the dimensionality problem, subspace research area has lately emerged that aims at finding clusters in subspaces original feature space. So far, methods mainly static thus, cannot address dynamic nature modern data. In this paper, we propose an incremental version density based projected algorithm PreDeCon, called incPreDeCon. The proposed efficiently updates only those might be affected due to population update.

参考文章(22)
Chien-Yu Chen, Shien-Ching Hwang, Yen-Jen Oyang, An Incremental Hierarchical Data Clustering Algorithm Based on Gravity Theory knowledge discovery and data mining. pp. 237- 250 ,(2002) , 10.1007/3-540-47887-6_23
Hans-Peter Kriegel, Martin Ester, Jörg Sander, Michael Wimmer, Xiaowei Xu, Incremental Clustering for Mining in a Data Warehousing Environment very large data bases. pp. 323- 333 ,(1998)
Hans-Peter Kriegel, Peer Kröoger, Irina Gotlibovich, Incremental OPTICS: Efficient Computation of Updates in a Hierarchical Cluster Ordering data warehousing and knowledge discovery. pp. 224- 233 ,(2003) , 10.1007/978-3-540-45228-7_23
Hans-Peter Kriegel, Martin Ester, Jörg Sander, Xiaowei Xu, A density-based algorithm for discovering clusters in large spatial Databases with Noise knowledge discovery and data mining. pp. 226- 231 ,(1996)
Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, Prabhakar Raghavan, Automatic subspace clustering of high dimensional data for data mining applications Proceedings of the 1998 ACM SIGMOD international conference on Management of data - SIGMOD '98. ,vol. 27, pp. 94- 105 ,(1998) , 10.1145/276304.276314
Hui Yang, Srinivasan Parthasarathy, Sameep Mehta, A generalized framework for mining spatio-temporal patterns in scientific data knowledge discovery and data mining. pp. 716- 721 ,(2005) , 10.1145/1081870.1081962
A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a review ACM Computing Surveys. ,vol. 31, pp. 264- 323 ,(1999) , 10.1145/331499.331504
Minos Garofalakis, Johannes Gehrke, Rajeev Rastogi, Querying and mining data streams Proceedings of the 2002 ACM SIGMOD international conference on Management of data - SIGMOD '02. pp. 635- 635 ,(2002) , 10.1145/564691.564794
Moses Charikar, Chandra Chekuri, Tomas Feder, Rajeev Motwani, Incremental Clustering and Dynamic Information Retrieval SIAM Journal on Computing. ,vol. 33, pp. 1417- 1440 ,(2004) , 10.1137/S0097539702418498
V. Ganti, J. Gehrke, R. Ramakrishnan, DEMON: mining and monitoring evolving data IEEE Transactions on Knowledge and Data Engineering. ,vol. 13, pp. 50- 63 ,(2001) , 10.1109/69.908980