Design of the 2015 ChaLearn AutoML challenge

作者: Isabelle Guyon , Kristin Bennett , Gavin Cawley , Hugo Jair Escalante , Sergio Escalera

DOI: 10.1109/IJCNN.2015.7280767

关键词:

摘要: ChaLearn is organizing the Automatic Machine Learning (AutoML) contest for IJCNN 2015, which challenges participants to solve classification and regression problems without any human intervention. Participants' code automatically run on servers train test learning machines. However, there no obligation submit code; half of prizes can be won by submitting prediction results only. Datasets progressively increasing difficulty are introduced throughout six rounds challenge. (Participants enter competition in round.) The alternate phases learners tested datasets have not seen, limited time tweak their algorithms those improve performance. This challenge will push state art fully automatic machine a wide range real-world problems. platform remain available beyond termination

参考文章(58)
Yoshua Bengio, Aaron C. Courville, Pascal Vincent, Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives ,(2012)
Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, Sequential model-based optimization for general algorithm configuration learning and intelligent optimization. pp. 507- 523 ,(2011) , 10.1007/978-3-642-25566-3_40
Ron Kohavi, George John, Wrappers for feature selection Artificial Intelligence. ,(1997)
Bal zs K gl, R mi Bardenet, R mi Bardenet, M ty s Brendel, Mich le Sebag, Collaborative hyperparameter tuning international conference on machine learning. ,vol. 28, pp. 199- 207 ,(2013)
Núria Macià, Tin Kam Ho, Albert Orriols-Puig, Ester Bernadó-Mansilla, The landscape contest at ICPR 2010 international conference on pattern recognition. pp. 29- 45 ,(2010) , 10.1007/978-3-642-17711-8_4
Michael J. Crawley, Statistics : An Introduction Using R ,(2005)
James Franklin, The elements of statistical learning : data mining, inference,and prediction The Mathematical Intelligencer. ,vol. 27, pp. 83- 85 ,(2005) , 10.1007/BF02985802
Bernhard Schölkopf, Alexander J. Smola, Learning with Kernels The MIT Press. pp. 626- ,(2018) , 10.7551/MITPRESS/4175.001.0001
Andy Field, Jeremy Miles, Discovering Statistics Using SPSS ,(2000)
Kristin P. Bennett, Michinari Momma, A Pattern Search Method for Model Selection of Support Vector Regression. siam international conference on data mining. pp. 261- 274 ,(2002)