Modelling the skewed exponential power distribution in finance

作者: J. Miguel Marín , Genaro Sucarrat

DOI: 10.1007/978-88-470-2342-0_33

关键词:

摘要: We study the properties of two methods for financial density selection Skewed Exponential Power (SEP) distribution. The simulations suggest can be great use in practice, since recovery probabilities are sufficiently high finite samples. For first method, which simply consists selecting a by means an information criterion, Schwarz criterion stands out it performs well across categories, and particular when Data Generating Process (DGP) is normal. In smaller samples that our second General-to-Specific (GETS) selection, improve rate predictable ways changing significance level. This useful because enables us to increase chosen category, if one wishes do so.

参考文章(19)
Thomas B. Fomby, Econometric analysis of financial and economic time series Emerald Group Publishing Limited. ,vol. 20, ,(2006)
E. J. Hannan, B. G. Quinn, The Determination of the Order of an Autoregression Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 41, pp. 190- 195 ,(1979) , 10.1111/J.2517-6161.1979.TB01072.X
Carmen Fernández, Mark F. J. Steel, On Bayesian Modeling of Fat Tails and Skewness Journal of the American Statistical Association. ,vol. 93, pp. 359- 371 ,(1998) , 10.1080/01621459.1998.10474117
Neil R. Ericsson, Julia Campos Fernández, David F. Hendry, General-to-specific modelling Research Papers in Economics. ,(2005)
Carmen Fernández, Jacek Osiewalski, Mark F. J. Steel, Modeling and Inference with υ-Spherical Distributions Journal of the American Statistical Association. ,vol. 90, pp. 1331- 1340 ,(1995) , 10.1080/01621459.1995.10476637
Daniel B. Nelson, CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH Econometrica. ,vol. 59, pp. 347- 370 ,(1991) , 10.2307/2938260
Tim Bollerslev, Generalized autoregressive conditional heteroskedasticity Journal of Econometrics. ,vol. 31, pp. 307- 327 ,(1986) , 10.1016/0304-4076(86)90063-1
Ivana Komunjer, Asymmetric power distribution: Theory and applications to risk measurement Journal of Applied Econometrics. ,vol. 22, pp. 891- 921 ,(2007) , 10.1002/JAE.961