C4C8(S) tori which are Cayley graphs

作者: Chunqi Liu

DOI: 10.1142/S1793830920500731

关键词:

摘要: A C4C8 net is a trivalent decoration made by alternating square C4 and octagons C8. It can cover either cylinder or tori. Cayley graph Cay(G,S) on group G with connection set S has the elemen...

参考文章(6)
Fan R. K. Chung, Bertram Kostant, Shlomo Sternberg, Groups and the Buckyball Lie Theory and Geometry. pp. 97- 126 ,(1994) , 10.1007/978-1-4612-0261-5_4
Brian Alspach, Matthew Dean, Honeycomb toroidal graphs are Cayley graphs Information Processing Letters. ,vol. 109, pp. 705- 708 ,(2009) , 10.1016/J.IPL.2009.03.009
Sumio Iijima, Helical microtubules of graphitic carbon Nature. ,vol. 354, pp. 56- 58 ,(1991) , 10.1038/354056A0
Gert Sabidussi, On a class of fixed-point-free graphs Proceedings of the American Mathematical Society. ,vol. 9, pp. 800- 804 ,(1958) , 10.1090/S0002-9939-1958-0097068-7
Professor Cayley, Desiderata and Suggestions: No. 2. The Theory of Groups: Graphical Representation American Journal of Mathematics. ,vol. 1, pp. 174- ,(1878) , 10.2307/2369306
F. Afshari, M. Maghasedi, Rhomboidal C4C8 toris which are Cayley graphs Discrete Mathematics, Algorithms and Applications. ,vol. 11, pp. 1950033- ,(2019) , 10.1142/S1793830919500332