Data Clustering using Memristor Networks.

作者: Shinhyun Choi , Patrick Sheridan , Wei D. Lu

DOI: 10.1038/SREP10492

关键词:

摘要: Memristors have emerged as a promising candidate for critical applications such non-volatile memory well non-Von Neumann computing architectures based on neuromorphic and machine learning systems. In this study, we demonstrate that memristors can be used to perform principal component analysis (PCA), an important technique data feature learning. The conductance changes of in response voltage pulses are studied modeled with internal state variable trace the analog behavior device. Unsupervised, online is achieved memristor crossbar using Sanger’s rule, derivative Hebb’s obtain components. details weights evolution during training investigated over epochs function parameters. effects device non-uniformity PCA network performance further analyzed. We show memristor-based capable linearly separating distinct classes from sensory high clarification success 97.6% even presence large variations.

参考文章(24)
Christopher M. Bishop, Pattern Recognition and Machine Learning ,(2006)
W. H. Wolberg, O. L. Mangasarian, Multisurface Method of Pattern Separation for Medical Diagnosis Applied to Breast Cytology Proceedings of the National Academy of Sciences of the United States of America. ,vol. 87, pp. 9193- 9196 ,(1990) , 10.1073/PNAS.87.23.9193
J. Joshua Yang, M.-X. Zhang, John Paul Strachan, Feng Miao, Matthew D. Pickett, Ronald D. Kelley, G. Medeiros-Ribeiro, R. Stanley Williams, High switching endurance in TaOx memristive devices Applied Physics Letters. ,vol. 97, pp. 232102- ,(2010) , 10.1063/1.3524521
John D. Hunter, Matplotlib: A 2D Graphics Environment Computing in Science and Engineering. ,vol. 9, pp. 90- 95 ,(2007) , 10.1109/MCSE.2007.55
Patrick Sheridan, Wen Ma, Wei Lu, Pattern recognition with memristor networks international symposium on circuits and systems. pp. 1078- 1081 ,(2014) , 10.1109/ISCAS.2014.6865326
Shinhyun Choi, Jihang Lee, Sungho Kim, Wei D. Lu, Retention failure analysis of metal-oxide based resistive memory Applied Physics Letters. ,vol. 105, pp. 113510- ,(2014) , 10.1063/1.4896154
G. Pourtois, H. Bender, L. Altimime, D.J. Wouters, J.A. Kittl, M. Jurczak, B. Govoreanu, G.S. Kar, Y-Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I.P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, 10×10nm 2 Hf/HfO x crossbar resistive RAM with excellent performance, reliability and low-energy operation international electron devices meeting. ,(2011) , 10.1109/IEDM.2011.6131652
Myoung-Jae Lee, Chang Bum Lee, Dongsoo Lee, Seung Ryul Lee, Man Chang, Ji Hyun Hur, Young-Bae Kim, Chang-Jung Kim, David H. Seo, Sunae Seo, U-In Chung, In-Kyeong Yoo, Kinam Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures Nature Materials. ,vol. 10, pp. 625- 630 ,(2011) , 10.1038/NMAT3070
Ting Chang, Sung-Hyun Jo, Kuk-Hwan Kim, Patrick Sheridan, Siddharth Gaba, Wei Lu, Synaptic behaviors and modeling of a metal oxide memristive device Applied Physics A. ,vol. 102, pp. 857- 863 ,(2011) , 10.1007/S00339-011-6296-1
Shimeng Yu, Ximeng Guan, H.-S. Philip Wong, Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model Applied Physics Letters. ,vol. 99, pp. 063507- ,(2011) , 10.1063/1.3624472