Suslin trees, the bounding number, and partition relations

作者: Dilip Raghavan , Stevo Todorcevic

DOI: 10.1007/S11856-018-1677-1

关键词:

摘要: We investigate the unbalanced ordinary partition relations of form λ → (λ, α)2 for various values cardinal and ordinal α. For example, we show that every infinite κ, existence a κ+-Suslin tree implies κ+ ↛ (κ+, log κ (κ+) + 2)2. The consistency positive relation b (b, all α < ω1 bounding number is also established from large cardinals.

参考文章(15)
Péter Komjáth, Distinguishing two partition properties of ω1 Fundamenta Mathematicae. ,vol. 155, pp. 95- 99 ,(1998)
Stevo Todorčevič, Reals and Positive Partition Relations Studies in Logic and the Foundations of Mathematics. ,vol. 114, pp. 159- 169 ,(1986) , 10.1016/S0049-237X(09)70691-3
Stevo Todorcevic, Partition problems in topology ,(1989)
Richard Laver, Saharon Shelah, The ℵ₂-Souslin hypothesis Transactions of the American Mathematical Society. ,vol. 264, pp. 411- 417 ,(1981) , 10.1090/S0002-9947-1981-0603771-7
Stevo Todorcevic, Partition relations for partially ordered sets Acta Mathematica. ,vol. 155, pp. 1- 25 ,(1985) , 10.1007/BF02392535
J. D. Halpern, H. L{äuchli, A partition theorem Transactions of the American Mathematical Society. ,vol. 124, pp. 360- 367 ,(1966) , 10.1090/S0002-9947-1966-0200172-2
James E. Baumgartner, Almost disjoint sets, the dense set problem and the partition calculus Annals of Mathematical Logic. ,vol. 9, pp. 401- 439 ,(1976) , 10.1016/0003-4843(76)90018-8
P Erdös, Richard Rado, None, Intersection Theorems for Systems of Sets Journal of the London Mathematical Society. ,vol. s1-35, pp. 85- 90 ,(1960) , 10.1112/JLMS/S1-35.1.85