Detecting Promising Areas by Evolutionary Clustering Search

作者: Alexandre CM Oliveira , Luiz AN Lorena , None

DOI: 10.1007/978-3-540-28645-5_39

关键词:

摘要: A challenge in hybrid evolutionary algorithms is to define efficient strategies cover all search space, applying local only actually promising areas. This paper proposes a way of detecting areas based on clustering. In this approach, an iterative clustering works simultaneously algorithm accounting the activity (selections or updatings) and identifying which them deserves special interest. The strategy becomes more aggressive such detected by search. first application unconstrained numerical optimization developed, showing competitiveness method.

参考文章(18)
Manuel Laguna, Rafael Martí, The OptQuest Callable Library Springer, Boston, MA. pp. 193- 218 ,(2003) , 10.1007/0-306-48126-X_7
Stefan Voß, David L. Woodruff, Optimization software class libraries Springer, Boston, MA. pp. 1- 24 ,(2002) , 10.1007/0-306-48126-X_1
Márk Jelasity, Pilar Martínez Ortigosa, Inmaculada García, UEGO, an Abstract Clustering Technique for Multimodal Global Optimization Journal of Heuristics. ,vol. 7, pp. 215- 233 ,(2001) , 10.1023/A:1011367930251
Results of the first international contest on evolutionary optimisation (1st ICEO) ieee international conference on evolutionary computation. pp. 611- 615 ,(1996) , 10.1109/ICEC.1996.542670
A simplex genetic algorithm hybrid ieee international conference on evolutionary computation. pp. 175- 180 ,(1997) , 10.1109/ICEC.1997.592291
Jian-Ping Li, Marton E. Balazs, Geoffrey T. Parks, P. John Clarkson, A species conserving genetic algorithm for multimodal function optimization Evolutionary Computation. ,vol. 10, pp. 107- 109 ,(2003) , 10.1162/106365603321829023
Rachid Chelouah, Patrick Siarry, Genetic and Nelder–Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions European Journal of Operational Research. ,vol. 148, pp. 335- 348 ,(2003) , 10.1016/S0377-2217(02)00401-0
R.R. Yager, A model of participatory learning systems man and cybernetics. ,vol. 20, pp. 1229- 1234 ,(1990) , 10.1109/21.59986
Jason G. Digalakis, Konstantinos G. Margaritis, An Experimental Study of Benchmarking Functions for Genetic Algorithms International Journal of Computer Mathematics. ,vol. 79, pp. 403- 416 ,(2002) , 10.1080/00207160210939