On Meet-Continuous Dcpos

作者: Hui Kou , Ying-Ming Liu , Mao-Kang Luo

DOI: 10.1007/978-94-017-1291-0_5

关键词:

摘要: It is well-known that a complete lattice L meet-continuous if and only \(x \wedge \vee D = { _{d \in D}}x d\) for all x ∈ P. This property in fact can be characterized by the Scott topology simply as clσ (↓x ∩ ↓D) ↓x whenever ≤ ∨ D. Since meet operator not involved, topological of meet-continuity naturally extended to general dcpos. Such dcpos are also called this note. turns out there exist close relations among meet-continuity, Hausdorff separation, quasicontinuity, continuity Scott-open filter bases. In particular, we prove (via Lawson topology) need quasicontinuous, category CONT reflective full subcategory QCONT, quasicontinuous domains, dcpo P when \(\sigma (P) \overline \sigma (P)\) or it semilattice with \({T_0}\overline (D)\)-topology, where \(\overline denote generated filters Moreover, under appropriate conditions, (D)\)-topology form cartesian closed category.

参考文章(19)
Jimmie D. Lawson, The Versatile Continuous Order Proceedings of the 3rd Workshop on Mathematical Foundations of Programming Language Semantics. pp. 134- 160 ,(1987) , 10.1007/3-540-19020-1_7
Constance Noyes Robertson, Outline of a Mathematical Theory of Computation ,(1970)
John R. Isbell, Function spaces and adjoints. MATHEMATICA SCANDINAVICA. ,vol. 36, pp. 317- 339 ,(1975) , 10.7146/MATH.SCAND.A-11581
Pierre-Louis Curien, Roberto M. Amadio, Domains and Lambda-Calculi ,(1998)
Reinhold Heckmann, An Upper Power Domain Construction in Terms of Strongly Compact Sets international conference on mathematical foundations of programming semantics. pp. 272- 293 ,(1991) , 10.1007/3-540-55511-0_14
Achim Jung, Cartesian closed categories of domains CWI Tracts. ,vol. 66, pp. 1- 110 ,(1989)
Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael W. Mislove, Dana S. Scott, A Compendium of continuous lattices Springer Berlin Heidelberg. ,(1980) , 10.1007/978-3-642-67678-9
K. G. Larsen, G. Winskel, Using information systems to solve reoursive domain equations effectively international symposium on semantics of data types. pp. 109- 129 ,(1984) , 10.1007/3-540-13346-1_5
Reinhold Heckmann, Power domain constructions european symposium on programming. ,vol. 17, pp. 77- 117 ,(1991) , 10.1016/0167-6423(91)90037-X