AndroParse - An Android Feature Extraction Framework and Dataset

作者: Robert Schmicker , Frank Breitinger , Ibrahim Baggili

DOI: 10.1007/978-3-030-05487-8_4

关键词:

摘要: Android malware has become a major challenge. As consequence, practitioners and researchers spend significant time analyzing applications (APK). A common procedure (especially for data scientists) is to extract features such as permissions, APIs or strings which can then be analyzed. Current state of the art tools have three issues: (1) single tool cannot all used by scientists (2) are not designed extensible (3) Existing parsers timely they runtime efficient scalable. Therefore, this work presents AndroParse an open-source parser written in Golang that currently extracts four most features: Permissions, APIs, Strings Intents. outputs JSON files easily programming languages. Constructing allowed us create extensive feature dataset accessed our independent REST API. Our 67,703 benign 46,683 malicious APK samples.

参考文章(27)
Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo Garcia Bringas, Gonzalo Álvarez, PUMA: Permission Usage to Detect Malware in Android CISIS/ICEUTE/SOCO Special Sessions. pp. 289- 298 ,(2013) , 10.1007/978-3-642-33018-6_30
Barbara Kofler, Susanne Brunner, Andreas Koller, Silke Wiesmayr, Felix Locker, Roland Lang, Balint Botz, Àgnes Kemény, Zsuzsanna Helyes, Contribution of the galanin system to inflammation SpringerPlus. ,vol. 4, pp. 1- 32 ,(2015) , 10.1186/2193-1801-4-S1-L57
G. Holmes, A. Donkin, I.H. Witten, WEKA: a machine learning workbench intelligent information systems. pp. 357- 361 ,(1994) , 10.1109/ANZIIS.1994.396988
Pallavi Kaushik, Amit Jain, Malware Detection Techniques in Android International Journal of Computer Applications. ,vol. 122, pp. 22- 26 ,(2015) , 10.5120/21794-5166
Yousra Aafer, Wenliang Du, Heng Yin, DroidAPIMiner: Mining API-Level Features for Robust Malware Detection in Android Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. pp. 86- 103 ,(2013) , 10.1007/978-3-319-04283-1_6
Ugur Pehlivan, Nuray Baltaci, Cengiz Acarturk, Nazife Baykal, The analysis of feature selection methods and classification algorithms in permission based Android malware detection 2014 IEEE Symposium on Computational Intelligence in Cyber Security (CICS). pp. 1- 8 ,(2014) , 10.1109/CICYBS.2014.7013371
Michael Spreitzenbarth, Thomas Schreck, Florian Echtler, Daniel Arp, Johannes Hoffmann, Mobile-Sandbox: combining static and dynamic analysis with machine-learning techniques International Journal of Information Security. ,vol. 14, pp. 141- 153 ,(2015) , 10.1007/S10207-014-0250-0
Federico Maggi, Andrea Valdi, Stefano Zanero, AndroTotal: a flexible, scalable toolbox and service for testing mobile malware detectors security and privacy in smartphones and mobile devices. pp. 49- 54 ,(2013) , 10.1145/2516760.2516768
Parvez Faruki, Ammar Bharmal, Vijay Laxmi, M.S. Gaur, Mauro Conti, Muttukrishnan Rajarajan, Evaluation of Android Anti-malware Techniques against Dalvik Bytecode Obfuscation trust security and privacy in computing and communications. pp. 414- 421 ,(2014) , 10.1109/TRUSTCOM.2014.54