Microfabricated devices for biomolecule encapsulation

作者: Samantha M. Desmarais , Henk P. Haagsman , Annelise E. Barron

DOI: 10.1002/ELPS.201200189

关键词:

摘要: Biomolecule encapsulation in droplets is important for miniaturizing biological assays to reduce reagent consumption, cost and time of analysis, can be most effectively achieved by using microfabricated devices. Microfabricated fluidic devices generate emulsified drops uniform size with controlled dimensions contents. Biological chemical components such as cells, microgels, beads, hydrogel precursors, polymer initiators, other encapsulated within these drops. Encapsulated emulsions are appealing a variety applications since used tiny reaction vessels perform high-throughput reactions at fast rates, consuming minimal sample solvent amounts due the small (micron diameters) emulsion Facile mixing droplet coalescence allow diversity performed on-chip tunable parameters. The simplicity operation speed analysis microencapsulated lends itself well an array quantitative biomolecular studies directed evolution, single-molecule DNA amplification, single-cell encapsulation, sequencing, enzyme kinetics, microfluidic cell culture. This review highlights recent advances field encapsulating devices, emphasizing development emulsifying encapsulations, device design, current that droplets.

参考文章(57)
Su Ryon Shin, Hojae Bae, Jae Min Cha, Ji Young Mun, Ying-Chieh Chen, Halil Tekin, Hyeongho Shin, Sidney Zarabi, Mehmet R Dokmeci, Shirley Tang, Ali Khademhosseini, None, Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation ACS Nano. ,vol. 6, pp. 362- 372 ,(2012) , 10.1021/NN203711S
Chang Mo Hwang, Shilpa Sant, Mahdokht Masaeli, Nezamoddin N Kachouie, Behnam Zamanian, Sang-Hoon Lee, Ali Khademhosseini, Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering Biofabrication. ,vol. 2, pp. 035003- 035003 ,(2010) , 10.1088/1758-5082/2/3/035003
Anna Boardman, Tim Chang, Albert Folch, Norman J. Dovichi, Indium-tin oxide coated microfabricated device for the injection of a single cell into a fused silica capillary for chemical cytometry. Analytical Chemistry. ,vol. 82, pp. 9959- 9961 ,(2010) , 10.1021/AC1022716
Jonathan Shemesh, Avital Nir, Avishay Bransky, Shulamit Levenberg, Coalescence-assisted generation of single nanoliter droplets with predefined composition Lab on a Chip. ,vol. 11, pp. 3225- 3230 ,(2011) , 10.1039/C0LC00730G
B. Rahfoth, J. Weisser, F. Sternkopf, T. Aigner, K. von der Mark, R. Bräuer, Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits Osteoarthritis and Cartilage. ,vol. 6, pp. 50- 65 ,(1998) , 10.1053/JOCA.1997.0092
E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, M. L. Samuels, Droplet microfluidic technology for single-cell high-throughput screening Proceedings of the National Academy of Sciences of the United States of America. ,vol. 106, pp. 14195- 14200 ,(2009) , 10.1073/PNAS.0903542106
Pascaline Mary, Adam R. Abate, Jeremy J. Agresti, David A. Weitz, Controlling droplet incubation using close-packed plug flow. Biomicrofluidics. ,vol. 5, pp. 24101- 24101 ,(2011) , 10.1063/1.3576934
Mark B. Romanowsky, Adam R. Abate, Assaf Rotem, Christian Holtze, David A. Weitz, High throughput production of single core double emulsions in a parallelized microfluidic device Lab on a Chip. ,vol. 12, pp. 802- 807 ,(2012) , 10.1039/C2LC21033A
Nicolynn E. Davis, Lindsay S. Karfeld-Sulzer, Sheng Ding, Annelise E. Barron, Synthesis and Characterization of a New Class of Cationic Protein Polymers for Multivalent Display and Biomaterial Applications Biomacromolecules. ,vol. 10, pp. 1125- 1134 ,(2009) , 10.1021/BM801348G
D. Ogończyk, M. Siek, P. Garstecki, Microfluidic formulation of pectin microbeads for encapsulation and controlled release of nanoparticles. Biomicrofluidics. ,vol. 5, pp. 013405- ,(2011) , 10.1063/1.3569944