On the fluctuations of the Casimir force

作者: G Barton

DOI: 10.1088/0305-4470/24/5/014

关键词:

摘要: Standard statistical and quantum physics are used to analyse the fluctuations of Casimir stress S (normal force per unit area) exerted on a flat perfect mirror (conductor) by zero-point electromagnetic fields in adjacent space, partly order help dispel apologetics that often befog effects generally. is measurable only when averaged (S) over finite times T, also areas typical linear dimensions a. With one mirror, mean-square deviations ( Delta S2)=constant*h(cross)2/c6T8, value such constants depending how apparatus averages time; if >cT, then (S2)=constant*h(cross)2/c4a2T6. On pair parallel mirrors distance L apart, cT>>a, cT>>L, S2)=( S2)=constant*h(cross)2/c4L2T6. Mirror transparency at frequencies well above 1/T has negligible effect. An appendix outlines mathematical problems, mostly unsolved, met attempts evaluate full probability distributions underlying deviations.

参考文章(8)
Günter Plunien, Berndt Müller, Walter Greiner, The Casimir effect Physics Reports. ,vol. 134, pp. 87- 193 ,(1986) , 10.1016/0370-1573(86)90020-7
I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, The general theory of van der Waals forces Advances in Physics. ,vol. 10, pp. 165- 209 ,(1961) , 10.1080/00018736100101281
P. W. Milonni, R. J. Cook, M. E. Goggin, Radiation Pressure from the Vacuum: Physical Interpretation of the Casimir Force Physical Review A. ,vol. 38, pp. 1621- 1623 ,(1988) , 10.1103/PHYSREVA.38.1621
G. Barton, N.S.J. Fawcett, Quantum electromagnetics of an electron near mirrors Physics Reports. ,vol. 170, pp. 1- 95 ,(1988) , 10.1016/0370-1573(88)90071-3
M.J. Sparnaay, Measurements of attractive forces between flat plates Physica D: Nonlinear Phenomena. ,vol. 24, pp. 751- 764 ,(1958) , 10.1016/S0031-8914(58)80090-7
Lowell S. Brown, G. Jordan Maclay, Vacuum Stress between Conducting Plates: An Image Solution Physical Review. ,vol. 184, pp. 1272- 1279 ,(1969) , 10.1103/PHYSREV.184.1272
G. P. Agrawal, C. L. Mehta, Ordering of the exponential of a quadratic in boson operators. II. Multimode case Journal of Mathematical Physics. ,vol. 18, pp. 408- 412 ,(1977) , 10.1063/1.523283