Motion segmentation by model-based clustering of incomplete trajectories

作者: Vasileios Karavasilis , Konstantinos Blekas , Christophoros Nikou

DOI: 10.1007/978-3-642-23783-6_10

关键词:

摘要: In this paper, we present a framework for visual object tracking based on clustering trajectories of image key points extracted from video. The main contribution our method is that the are automatically video sequence and they provided directly to model-based approach. most other methodologies, latter constitutes difficult part since resulting feature have short duration, as disappear reappear due occlusion, illumination, viewpoint changes noise. We here sparse, translation invariant regression mixture model variable length. overall scheme converted into Maximum A Posteriori approach, where Expectation-Maximization (EM) algorithm used estimating parameters. proposed detects different objects in input by assigning each trajectory cluster, simultaneously provides motion all objects. Numerical results demonstrate ability offer more accurate robust solution comparison with mean shift tracker, especially cases occlusions.

参考文章(34)
Daniel Zaldivar, Raúl Rojas, Erik V. Cuevas, Kalman filter for vision tracking ,(2005) , 10.17169/REFUBIUM-22852
Artifical Intelligence for Human Computing Lecture Notes in Artificial Intelligence. ,(2007) , 10.1007/978-3-540-72348-6
Antonios Oikonomopoulos, Ioannis Patras, Maja Pantic, Nikos Paragios, Trajectory-based representation of human actions international joint conference on artificial intelligence. pp. 133- 154 ,(2007) , 10.1007/978-3-540-72348-6_7
Carme Julià, Angel Sappa, Felipe Lumbreras, Joan Serrat, Antonio López, Motion Segmentation from Feature Trajectories with Missing Data iberian conference on pattern recognition and image analysis. pp. 483- 490 ,(2007) , 10.1007/978-3-540-72847-4_62
Matthias Zeppelzauer, Maia Zaharieva, Dalibor Mitrovic, Christian Breiteneder, None, A novel trajectory clustering approach for motion segmentation conference on multimedia modeling. pp. 433- 443 ,(2010) , 10.1007/978-3-642-11301-7_44
Michael E Tipping, Sparse bayesian learning and the relevance vector machine Journal of Machine Learning Research. ,vol. 1, pp. 211- 244 ,(2001) , 10.1162/15324430152748236
Vasileios Karavasilis, Christophoros Nikou, Aristidis Likas, Visual tracking using the Earth Mover's Distance between Gaussian mixtures and Kalman filtering Image and Vision Computing. ,vol. 29, pp. 295- 305 ,(2011) , 10.1016/J.IMAVIS.2010.12.002
K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, L. Van Gool, A Comparison of Affine Region Detectors International Journal of Computer Vision. ,vol. 65, pp. 43- 72 ,(2005) , 10.1007/S11263-005-3848-X
Huiyu Zhou, Yuan Yuan, Chunmei Shi, Object tracking using SIFT features and mean shift Computer Vision and Image Understanding. ,vol. 113, pp. 345- 352 ,(2009) , 10.1016/J.CVIU.2008.08.006