On Minimization of Sums of Heterogeneous Quadratic Functions on Stiefel Manifolds

作者: T. Rapcsák

DOI: 10.1007/978-1-4757-5284-7_12

关键词:

摘要: The minimization of functions Σ i=1 k 1/2x i T A x is studied under the constraint that vectors 1, 2, ..., ∈ R n form an orthonormal system and , (k ≤ n) are given symmetric × matrices. set feasible points determines a differentiable manifold introduced by Stiefel in 1935. optimality conditions obtained global Lagrange multiplier rule, variable metric methods along geodesics suggested as solving for which convergence theorem proved. Such problems arise various situations multivariate statistical analysis.

参考文章(12)
T. Rapcsák, Geodesic convexity in nonlinear optimization Journal of Optimization Theory and Applications. ,vol. 69, pp. 169- 183 ,(1991) , 10.1007/BF00940467
Ioan Mackenzie James, The topology of Stiefel manifolds ,(1976)
T. Rapcsák, Variable metric methods along geodetics Springer, Boston, MA. pp. 257- 275 ,(1998) , 10.1007/978-1-4757-2878-1_19
Marianna Bolla, György Michaletzky, Gábor Tusnády, Margit Ziermann, Extrema of sums of heterogeneous quadratic forms Linear Algebra and its Applications. ,vol. 269, pp. 331- 365 ,(1998) , 10.1016/S0024-3795(97)00230-9
E. Stiefel, Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten Commentarii Mathematici Helvetici. ,vol. 8, pp. 305- 353 ,(1935) , 10.1007/BF01199559
D. Gabay, Minimizing a differentiable function over a differential manifold Journal of Optimization Theory and Applications. ,vol. 37, pp. 177- 219 ,(1982) , 10.1007/BF00934767
Tamás Rapcsák, Smooth Nonlinear Optimization in Rn ,(1997)
T. Rapcsák, T. T. Thang, Nonlinear coordinate representations of smooth optimization problems Journal of Optimization Theory and Applications. ,vol. 86, pp. 459- 489 ,(1995) , 10.1007/BF02192090
James M. Ortega, Werner C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables ,(1970)
J. F. Adams, Vector Fields on Spheres The Annals of Mathematics. ,vol. 75, pp. 603- ,(1962) , 10.2307/1970213