A unifying view on dataset shift in classification

作者: Jose G. Moreno-Torres , Troy Raeder , Rocío Alaiz-Rodríguez , Nitesh V. Chawla , Francisco Herrera

DOI: 10.1016/J.PATCOG.2011.06.019

关键词:

摘要: … dataset shift has received a growing amount of interest in the last few years. The fact that most real-world applications have to cope with some form of shift … the analysis of dataset shift in …

参考文章(62)
Ralf Klinkenberg, Learning drifting concepts: Example selection vs. example weighting intelligent data analysis. ,vol. 8, pp. 281- 300 ,(2004) , 10.3233/IDA-2004-8305
James J. Heckman, Sample Selection Bias as a Specification Error Econometrica. ,vol. 47, pp. 153- 161 ,(1979) , 10.2307/1912352
Marco Saerens, Patrice Latinne, Christine Decaestecker, Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure Neural Computation. ,vol. 14, pp. 21- 41 ,(2002) , 10.1162/089976602753284446
Carla E. Brodley, Terran Lane, Approaches to online learning and concept drift for user identification in computer security knowledge discovery and data mining. pp. 259- 263 ,(1998)
Nitesh V. Chawla, Troy Raeder, Model Monitor ( M 2 ): Evaluating, Comparing, and Monitoring Models Journal of Machine Learning Research. ,vol. 10, pp. 1387- 1390 ,(2009) , 10.5555/1577069.1755830
Alireza Farhangfar, Lukasz Kurgan, Jennifer Dy, Impact of imputation of missing values on classification error for discrete data Pattern Recognition. ,vol. 41, pp. 3692- 3705 ,(2008) , 10.1016/J.PATCOG.2008.05.019
Dataset Shift in Machine Learning In: nonero-Candela, JQ and Sugiyama, M and Schwaighofer, A and Lawrence, N, (eds.) (pp. pp. 131-160). MIT Press: Cambridge, MA. (2008). pp. 29- 38 ,(2009) , 10.7551/MITPRESS/9780262170055.001.0001
Ying Yang, Xindong Wu, Xingquan Zhu, Conceptual equivalence for contrast mining in classification learning data and knowledge engineering. ,vol. 67, pp. 413- 429 ,(2008) , 10.1016/J.DATAK.2008.07.001
Chris Drummond, Robert C. Holte, Explicitly representing expected cost: an alternative to ROC representation knowledge discovery and data mining. pp. 198- 207 ,(2000) , 10.1145/347090.347126