Efficient screening of climate model sensitivity to a large number of perturbed input parameters

作者: Curt Covey , Donald D. Lucas , John Tannahill , Xabier Garaizar , Richard Klein

DOI: 10.1002/JAME.20040

关键词:

摘要: [1] Modern climate models contain numerous input parameters, each with a range of possible values. Since the volume parameter space increases exponentially number parameters N, it is generally impossible to directly evaluate model throughout this even if just 2–3 values are chosen for parameter. Sensitivity screening algorithms, however, can identify having relatively little effect on variety output fields, either individually or in nonlinear combination. This aid both development and uncertainty quantification (UQ) process. Here we report results from sensitivity algorithm hitherto untested modeling, Morris one-at-a-time (MOAT) method. drastically reduces computational cost estimating sensitivities high dimensional because sample size grows linearly rather than N. It nevertheless samples over much N-dimensional allows assessment interactions, unlike traditional elementary (EOAT) variation. We applied EOAT MOAT Community Atmosphere Model (CAM), assessing CAM's behavior as function 27 uncertain related boundary layer, clouds, other subgrid scale processes. For radiation balance at top atmosphere, rank most similarly, but identifies that underplays two convection operate nonlinearly model. MOAT's ranking robust modest algorithmic variations, qualitatively consistent experience.

参考文章(38)
Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, Stefano Tarantola, Global Sensitivity Analysis: The Primer ,(2008)
C Covey, S Brandon, P Bremer, D Domyancis, X Garaizar, G Johannesson, R Klein, S Klein, D Lucas, J Tannahill, Y Zhang, A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model Lawrence Livermore National Laboratory. ,(2011) , 10.2172/1035301
Yuying Zhang, Shaocheng Xie, Curt Covey, Donald D. Lucas, Peter Gleckler, Stephen A. Klein, John Tannahill, Charles Doutriaux, Richard Klein, Regional assessment of the parameter-dependent performance of CAM4 in simulating tropical clouds Geophysical Research Letters. ,vol. 39, ,(2012) , 10.1029/2012GL052184
C. Tong, F. Graziani, A Practical Global Sensitivity Analysis Methodology for Multi-Physics Applications Springer, Berlin, Heidelberg. pp. 277- 299 ,(2008) , 10.1007/978-3-540-77362-7_12
Alan M. Dunker, Efficient calculation of sensitivity coefficients for complex atmospheric models Atmospheric Environment. ,vol. 15, pp. 1155- 1161 ,(1981) , 10.1016/0004-6981(81)90305-X
A. Kiparissides, S. S. Kucherenko, A. Mantalaris, E. N. Pistikopoulos, Global Sensitivity Analysis Challenges in Biological Systems Modeling Industrial & Engineering Chemistry Research. ,vol. 48, pp. 7168- 7180 ,(2009) , 10.1021/IE900139X
P. J. Gleckler, K. E. Taylor, C. Doutriaux, Performance metrics for climate models Journal of Geophysical Research. ,vol. 113, ,(2008) , 10.1029/2007JD008972
W. Lawrence Gates, James S. Boyle, Curt Covey, Clyde G. Dease, Charles M. Doutriaux, Robert S. Drach, Michael Fiorino, Peter J. Gleckler, Justin J. Hnilo, Susan M. Marlais, Thomas J. Phillips, Gerald L. Potter, Benjamin D. Santer, Kenneth R. Sperber, Karl E. Taylor, Dean N. Williams, An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I) Bulletin of the American Meteorological Society. ,vol. 80, pp. 29- 55 ,(1999) , 10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2
Gilles Pujol, Simplex-based screening designs for estimating metamodels Reliability Engineering & System Safety. ,vol. 94, pp. 1156- 1160 ,(2009) , 10.1016/J.RESS.2008.08.002