Improving the accuracy of convexity splitting methods for gradient flow equations

作者: Karl Glasner , Saulo Orizaga

DOI: 10.1016/J.JCP.2016.03.042

关键词:

摘要: This paper introduces numerical time discretization methods which significantly improve the accuracy of the convexity-splitting approach of Eyre (1998) [7], while retaining the same …

参考文章(24)
Tony F. Chan, Jianhong (Jackie) Shen, Image Processing And Analysis: Variational, Pde, Wavelet, And Stochastic Methods Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. ,(2005) , 10.1137/1.9780898717877
P. Vignal, L. Dalcin, D.L. Brown, N. Collier, V.M. Calo, An energy-stable convex splitting for the phase-field crystal equation Computers & Structures. ,vol. 158, pp. 355- 368 ,(2015) , 10.1016/J.COMPSTRUC.2015.05.029
Zhengru Zhang, Yuan Ma, Zhonghua Qiao, An adaptive time-stepping strategy for solving the phase field crystal model Journal of Computational Physics. ,vol. 249, pp. 204- 215 ,(2013) , 10.1016/J.JCP.2013.04.031
Z. Hu, S.M. Wise, C. Wang, J.S. Lowengrub, Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation Journal of Computational Physics. ,vol. 228, pp. 5323- 5339 ,(2009) , 10.1016/J.JCP.2009.04.020
Mowei Cheng, James A. Warren, Controlling the accuracy of unconditionally stable algorithms in the Cahn-Hilliard equation. Physical Review E. ,vol. 75, pp. 017702- ,(2007) , 10.1103/PHYSREVE.75.017702
L.Q. Chen, Jie Shen, Applications of semi-implicit Fourier-spectral method to phase field equations Computer Physics Communications. ,vol. 108, pp. 147- 158 ,(1998) , 10.1016/S0010-4655(97)00115-X
S. M. Wise, C. Wang, J. S. Lowengrub, An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation SIAM Journal on Numerical Analysis. ,vol. 47, pp. 2269- 2288 ,(2009) , 10.1137/080738143