Energy, Entropy and Quantum Tunneling of Protons and Electrons in Brain Mitochondria: Relation to Mitochondrial Impairment in Aging-Related Human Brain Diseases and Therapeutic Measures

作者: Isaac G. Onyango , James P. Bennett

DOI: 10.3390/BIOMEDICINES9020225

关键词:

摘要: Adult human brains consume a disproportionate amount of energy substrates (2-3% body weight; 20-25% total glucose and oxygen). Adenosine triphosphate (ATP) is universal currency in produced by oxidative phosphorylation (OXPHOS) using ATP synthase, nano-rotor powered the proton gradient generated from proton-coupled electron transfer (PCET) multi-complex transport chain (ETC). ETC catalysis rates are reduced humans with neurodegenerative diseases (NDDs). Declines function NDDs may result combinations nitrative stress (NS)-oxidative (OS) damage; mitochondrial and/or nuclear genomic mutations ETC/OXPHOS genes; epigenetic modifications or defects importation assembly proteins complexes, respectively; alterations dynamics (fusion, fission, mitophagy). Substantial free gained direct O2-mediated oxidation NADH. Traditional mechanisms require separation between O2 electrons flowing NADH/FADH2 through ETC. Quantum tunneling much larger protons facilitate this separation. Neuronal death be viewed as local increase entropy requiring constant input to avoid. The requirement brain partially used for avoidance increase. Mitochondrial therapeutics seeks correct deficiencies OXPHOS.

参考文章(260)
Majid Alfadhel, Marwan Nashabat, Qais Abu Ali, Khalid Hundalla, Mitochondrial iron-sulfur cluster biogenesis from molecular understanding to clinical disease Neurosciences (Riyadh, Saudi Arabia). ,vol. 22, pp. 4- 13 ,(2017) , 10.17712/NSJ.2017.1.20160542
Rick B. Vega, Julie L. Horton, Daniel P. Kelly, Maintaining Ancient Organelles: Mitochondrial Biogenesis and Maturation Circulation Research. ,vol. 116, pp. 1820- 1834 ,(2015) , 10.1161/CIRCRESAHA.116.305420
Sara P. Ortega, Edward T. Chouchani, Sihem Boudina, Stress turns on the heat: Regulation of mitochondrial biogenesis and UCP1 by ROS in adipocytes. Adipocyte. ,vol. 6, pp. 56- 61 ,(2017) , 10.1080/21623945.2016.1273298
Ryan M. Whitaker, Daniel Corum, Craig C. Beeson, Rick G. Schnellmann, Mitochondrial Biogenesis as a Pharmacological Target: A New Approach to Acute and Chronic Diseases Annual Review of Pharmacology and Toxicology. ,vol. 56, pp. 229- 249 ,(2016) , 10.1146/ANNUREV-PHARMTOX-010715-103155
Eric Tönnies, Eugenia Trushina, Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease Journal of Alzheimer's Disease. ,vol. 57, pp. 1105- 1121 ,(2017) , 10.3233/JAD-161088
Marina Villanueva Paz, David Cotán, Juan Garrido-Maraver, Mario D. Cordero, Manuel Oropesa-Ávila, Mario de La Mata, Ana Delgado Pavón, Isabel de Lavera, Elizabet Alcocer-Gómez, José A. Sánchez-Alcázar, Targeting autophagy and mitophagy for mitochondrial diseases treatment Expert Opinion on Therapeutic Targets. ,vol. 20, pp. 487- 500 ,(2016) , 10.1517/14728222.2016.1101068
Jessica A Williams, Katrina Zhao, Shengkan Jin, Wen-Xing Ding, New methods for monitoring mitochondrial biogenesis and mitophagy in vitro and in vivo. Experimental Biology and Medicine. ,vol. 242, pp. 781- 787 ,(2017) , 10.1177/1535370216688802
Masahito Tachibana, Paula Amato, Michelle Sparman, Joy Woodward, Dario Melguizo Sanchis, Hong Ma, Nuria Marti Gutierrez, Rebecca Tippner-Hedges, Eunju Kang, Hyo-Sang Lee, Cathy Ramsey, Keith Masterson, David Battaglia, David Lee, Diana Wu, Jeffrey Jensen, Phillip Patton, Sumita Gokhale, Richard Stouffer, Shoukhrat Mitalipov, Towards germline gene therapy of inherited mitochondrial diseases Nature. ,vol. 493, pp. 627- 631 ,(2013) , 10.1038/NATURE11647