Parametric modulation of instabilities of a nonlinear discrete system

作者: M. Lücke , Y. Saito

DOI: 10.1016/0375-9601(82)90471-6

关键词:

摘要: Abstract The effect of modulation on the first instability logistic map is determined. Similarities with parametrically modulated anharmonic oscillator are discussed. We also discuss small-amplitude period-doubling bifurcations and structural similarity Taylor vortex flow in finite length annuli.

参考文章(8)
Stephen H. Davis, S. Rosenblat, On Bifurcating Periodic Solutions at Low Frequency Studies in Applied Mathematics. ,vol. 57, pp. 59- 76 ,(1977) , 10.1002/SAPM197757159
Pierre Collet, Jean Pierre Eckmann, Iterated maps on the interval as dynamical systems ,(1980)
S H Davis, The Stability of Time-Periodic Flows Annual Review of Fluid Mechanics. ,vol. 8, pp. 57- 74 ,(1976) , 10.1146/ANNUREV.FL.08.010176.000421
Earl A. Coddington, Norman Levinson, Theory of Ordinary Differential Equations ,(1955)
T. Mullin, T. Brooke Benjamin, Transition to oscillatory motion in the Taylor experiment Nature. ,vol. 288, pp. 567- 569 ,(1980) , 10.1038/288567A0
Robert M. May, Simple mathematical models with very complicated dynamics Nature. ,vol. 261, pp. 459- 467 ,(1976) , 10.1038/261459A0
Mitchell J. Feigenbaum, Quantitative universality for a class of nonlinear transformations Journal of Statistical Physics. ,vol. 19, pp. 25- 52 ,(1978) , 10.1007/BF01020332
A. Ito, Successive Subharmonic Bifurcations and Chaos in a Nonlinear Mathieu Equation Progress of Theoretical Physics. ,vol. 61, pp. 815- 824 ,(1979) , 10.1143/PTP.61.815