Impact of Effective Mass on the Scaling Behavior of the $f_{T}$ and $f_{\bf max}$ of III–V High-Electron-Mobility Transistors

作者: S. Ahmed , K. D. Holland , N. Paydavosi , C. M. S. Rogers , A. U. Alam

DOI: 10.1109/TNANO.2012.2217348

关键词:

摘要: Among the contenders for applications at terahertz frequencies are III-V high-electron-mobility transistors (HEMTs). In this paper, we report on a tendency devices with low effective-mass channel materials to exhibit saturation in their unity-current-gain and unity-power-gain cutoff (fT fmax) downscaling of gate length. We focus InGaAs GaN HEMTs examine lengths from 50 nm down 10 nm. A self-consistent, quantum-mechanical solver based method nonequilibrium Green's functions is used quasistatically extract fT intrinsic devices. This model then combined series resistances heterostructure stack parasitic capacitances metal contacts develop complete extrinsic model, fmax. It shown that fmax will saturate, i.e., attain maximum value ceases increase as length scaled down, caused by effective mass materials. also have faster long lengths, but consequence lower mass, they experience more rapid than HEMTs, such two comparable very short (~10 nm). On other hand, due favorable parasitics, it higher all considered paper.

参考文章(50)
YQ Wu, WK Wang, Ozhan Koybasi, DN Zakharov, EA Stach, S Nakahara, JCM Hwang, PD Ye, None, 0.8-V Supply Voltage Deep-Submicrometer Inversion-Mode $\hbox{In}_{0.75}\hbox{Ga}_{0.25}\hbox{As}$ MOSFET IEEE Electron Device Letters. ,vol. 30, pp. 700- 702 ,(2009) , 10.1109/LED.2009.2022346
L C Castro, D L Pulfrey, Extrapolated fmax for carbon nanotube field-effect transistors Nanotechnology. ,vol. 17, pp. 300- 304 ,(2006) , 10.1088/0957-4484/17/1/051
Serge Luryi, Quantum capacitance devices Applied Physics Letters. ,vol. 52, pp. 501- 503 ,(1988) , 10.1063/1.99649
R. Venugopal, Z. Ren, S. Datta, M. S. Lundstrom, D. Jovanovic, Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches Journal of Applied Physics. ,vol. 92, pp. 3730- 3739 ,(2002) , 10.1063/1.1503165
Remziye Tülek, Aykut Ilgaz, Sibel Gökden, Ali Teke, Mustafa K. Öztürk, Mehmet Kasap, Süleyman Özçelik, Engin Arslan, Ekmel Özbay, Comparison of the transport properties of high quality AlGaN/AlN/GaN and AlInN/AlN/GaN two-dimensional electron gas heterostructures Journal of Applied Physics. ,vol. 105, pp. 013707- ,(2009) , 10.1063/1.2996281
Akira Endoh, Yoshimi Yamashita, Keiji Ikeda, Masataka Higashiwaki, Kohki Hikosaka, Toshiaki Matsui, Satoshi Hiyamizu, Takashi Mimura1, Fabrication of sub-50-nm-gate i-AlGaN/GaN HEMTs on sapphire physica status solidi (c). ,vol. 0, pp. 2368- 2371 ,(2003) , 10.1002/PSSC.200303335
Supriyo Datta, Nanoscale device modeling: the Green’s function method Superlattices and Microstructures. ,vol. 28, pp. 253- 278 ,(2000) , 10.1006/SPMI.2000.0920
B.K. Meyer, D. Volm, A. Graber, H.C. Alt, T. Detchprohm, A. Amano, I. Akasaki, Shallow donors in GaN—The binding energy and the electron effective mass Solid State Communications. ,vol. 95, pp. 597- 600 ,(1995) , 10.1016/0038-1098(95)00337-1
Yan Wang, Long Ma, Zhiping Yu, Lilin Tian, Optimization of two-dimensional electron gases and I–V characteristics for AlGaN/GaN HEMT devices Superlattices and Microstructures. ,vol. 36, pp. 869- 875 ,(2004) , 10.1016/J.SPMI.2004.09.042
A. S. Barker, M. Ilegems, Infrared Lattice Vibrations and Free-Electron Dispersion in GaN Physical Review B. ,vol. 7, pp. 743- 750 ,(1973) , 10.1103/PHYSREVB.7.743