SPECTRAL INTEGRATION AND SPECTRAL THEORY FOR NON-ARCHIMEDEAN BANACH SPACES

作者: S. Ludkovsky , B. Diarra

DOI: 10.1155/S016117120201150X

关键词:

摘要: Banach algebras over arbitrary complete non-Archimedean fields are considered such that operators may be nonanalytic. There different types of spaces nonArchimedean fields. We have determined the spectrum some closed commutative subalgebras algebra (E) continuous linear on a free space E generated by projectors. investigate spectral integration algebras. define measure and prove several properties. analog Stone theorem. It also contains case C-algebras C∞(X, K). particular representation C-algebra with help L( ˆ A, µ, K)-projection-valued measure. consider theorems for families commuting space.

参考文章(21)
Sergio Albeverio, Jose Manuel Bayod, Cristina Perez-Garcia, Roberto Cianci, Andrew Khrennikov, Non-Archimedean Analogues of Orthogonal and Symmetric Operators and p-adic Quantization Acta Applicandae Mathematicae. ,vol. 57, pp. 205- 237 ,(1999) , 10.1023/A:1006219101760
L. Gruson, Théorie de Fredholm $p$-adique Bulletin de la Société mathématique de France. ,vol. 79, pp. 67- 95 ,(1966) , 10.24033/BSMF.1635
Frank D. Grosshans, Morikuni Goto, Semisimple Lie Algebras ,(1978)
A. C. M. van Rooij, Non-Archimedean functional analysis ,(1978)
Alain Escassut, Nicolas Mainetti, Spectral semi-norm of a {$p$}-adic Banach algebra Bulletin of The Belgian Mathematical Society-simon Stevin. ,vol. 5, pp. 79- 91 ,(1998) , 10.36045/BBMS/1103408967
Barry Simon, Michael Reed, Methods of Modern Mathematical Physics ,(1972)
M. Van der put, The Ring of Bounded Operators on a Non-Archimedean Normed Linear Space Indagationes Mathematicae (Proceedings). ,vol. 71, pp. 260- 264 ,(1968) , 10.1016/S1385-7258(68)50029-5