Mitochondrial resetting and metabolic reprogramming in induced pluripotent stem cells and mitochondrial disease modeling.

作者: Yi-Chao Hsu , Chien-Tsun Chen , Yau-Huei Wei

DOI: 10.1016/J.BBAGEN.2016.01.009

关键词:

摘要: Abstract Background Nuclear reprogramming with pluripotency factors enables somatic cells to gain the properties of embryonic stem cells. Mitochondrial resetting and metabolic are suggested be key early events in induction human skin fibroblasts induced pluripotent (iPSCs). Scope review We recent advances study molecular basis for mitochondrial regulation formation iPSCs. In particular, progress using iPSCs disease modeling was discussed. Major conclusions rely on glycolysis rather than oxidative phosphorylation as a major supply energy. thus play crucial roles process generation from General significance Neurons, myocytes, cardiomyocytes containing abundant mitochondria body, which can differentiated or trans-differentiated fibroblasts. Generating these derived patients diseases by trans-differentiation cell-specific transcription will provide valuable insights into role DNA heteroplasmy serves novel platform screening drugs treat diseases.

参考文章(117)
Anne B. C. Cherry, Katelyn E. Gagne, Erin M. Mcloughlin, Anna Baccei, Bryan Gorman, Odelya Hartung, Justine D. Miller, Jin Zhang, Rebecca L. Zon, Tan A. Ince, Ellis J. Neufeld, Paul H. Lerou, Mark D. Fleming, George Q. Daley, Suneet Agarwal, Induced pluripotent stem cells with a mitochondrial DNA deletion. Stem Cells. ,vol. 31, pp. 1287- 1297 ,(2013) , 10.1002/STEM.1354
Benedikt Westermann, Mitochondrial fusion and fission in cell life and death Nature Reviews Molecular Cell Biology. ,vol. 11, pp. 872- 884 ,(2010) , 10.1038/NRM3013
William C. Copeland, Matthew J. Longley, Mitochondrial genome maintenance in health and disease DNA Repair. ,vol. 19, pp. 190- 198 ,(2014) , 10.1016/J.DNAREP.2014.03.010
J. Fujikura, K. Nakao, M. Sone, M. Noguchi, E. Mori, M. Naito, D. Taura, M. Harada-Shiba, I. Kishimoto, A. Watanabe, I. Asaka, K. Hosoda, K. Nakao, Induced pluripotent stem cells generated from diabetic patients with mitochondrial DNA A3243G mutation. Diabetologia. ,vol. 55, pp. 1689- 1698 ,(2012) , 10.1007/S00125-012-2508-2
Ken Nishimura, Masayuki Sano, Manami Ohtaka, Birei Furuta, Yoko Umemura, Yoshiro Nakajima, Yuzuru Ikehara, Toshihiro Kobayashi, Hiroaki Segawa, Satoko Takayasu, Hideyuki Sato, Kaori Motomura, Eriko Uchida, Toshie Kanayasu-Toyoda, Makoto Asashima, Hiromitsu Nakauchi, Teruhide Yamaguchi, Mahito Nakanishi, Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. Journal of Biological Chemistry. ,vol. 286, pp. 4760- 4771 ,(2011) , 10.1074/JBC.M110.183780
Peter Hornsby, Qiu, Farnsworth, Mishra, Patient-specific induced pluripotent stem cells in neurological disease modeling: the importance of nonhuman primate models Stem Cells and Cloning: Advances and Applications. ,vol. 6, pp. 19- 29 ,(2013) , 10.2147/SCCAA.S34798
Lyle Armstrong, Katarzyna Tilgner, Gabriele Saretzki, Stuart P. Atkinson, Miodrag Stojkovic, Ruben Moreno, Stefan Przyborski, Majlinda Lako, Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells. ,vol. 28, pp. 661- 673 ,(2010) , 10.1002/STEM.307
Tina D. Jeppesen, Marianne Schwartz, David B. Olsen, John Vissing, Oxidative capacity correlates with muscle mutation load in mitochondrial myopathy Annals of Neurology. ,vol. 54, pp. 86- 92 ,(2003) , 10.1002/ANA.10594
Yoshinori Yoshida, Kazutoshi Takahashi, Keisuke Okita, Tomoko Ichisaka, Shinya Yamanaka, Hypoxia Enhances the Generation of Induced Pluripotent Stem Cells Cell Stem Cell. ,vol. 5, pp. 237- 241 ,(2009) , 10.1016/J.STEM.2009.08.001