Parity-Constrained Triangulations with Steiner Points

作者: Victor Alvarez

DOI: 10.1007/S00373-013-1389-6

关键词:

摘要: Let $${P\subset\mathbb{R}^{2}}$$ P ? R 2 be a set of n points, which k lie in the interior convex hull CH(P) P. us call triangulation T even (odd) if and only all its vertices have degree, pseudo-even (pseudo-odd) at least degree. On one hand, triangulations having degree nice property; their can 3-colored, see (Heawood Quart J Pure Math 29:270---285, 1898, Steinberg A source book for challenges directions, vol 55. Elsevier, Amsterdam, pp 211---248, 1993, Diks et al. Lecture notes computer science, 2573. Springer, Berlin, 138---149, 2002). other odd recently found an application colored version classic "Happy Ending Problem" Erd?s Szekeres, (Aichholzer SIAM Discrete 23(4):2147---2155, 2010). It is easy to prove that there are sets points admit neither nor pseudo-odd triangulations. In this paper we show nonetheless how construct Steiner S = S(P) size most $${\frac{k}{3} + c}$$ 3 c , where positive constant, such constructed on $${P \cup S}$$ . Moreover, also always using $${\frac{n}{3} again constant. Our constructions property but two CH(P).

参考文章(12)
Louis Quintas, John W Kennedy, John Gordon Gimbel, Quo Vadis, Graph Theory?: A Source Book for Challenges and Directions ,(1993)
A. Petermann, ON THE FOUR-COLOR-MAP THEOREM arXiv: High Energy Physics - Theory. ,(2004)
Ali A. Kooshesh, Bernard M. E. Moret, Folding a Triangulated Simple Polygon: Structural and Algorithmic Results ICCI '91 Proceedings of the International Conference on Computing and Information: Advances in Computing and Information. pp. 102- 110 ,(1991) , 10.1007/3-540-54029-6_158
Richard Steinberg, The State of the Three Color Problem Annals of discrete mathematics. ,vol. 55, pp. 211- 248 ,(1993) , 10.1016/S0167-5060(08)70391-1
Oswin Aichholzer, Thomas Hackl, Clemens Huemer, Ferran Hurtado, Birgit Vogtenhuber, Large Bichromatic Point Sets Admit Empty Monochromatic 4-Gons SIAM Journal on Discrete Mathematics. ,vol. 23, pp. 2147- 2155 ,(2010) , 10.1137/090767947
Oswin Aichholzer, Thomas Hackl, Michael Hoffmann, Alexander Pilz, Günter Rote, Bettina Speckmann, Birgit Vogtenhuber, Plane Graphs with Parity Constraints Graphs and Combinatorics. ,vol. 30, pp. 47- 69 ,(2014) , 10.1007/S00373-012-1247-Y
Steve Fisk, A short proof of Chvátal's Watchman Theorem Journal of Combinatorial Theory, Series B. ,vol. 24, pp. 374- ,(1978) , 10.1016/0095-8956(78)90059-X
Krzysztof Diks, Lukasz Kowalik, Maciej Kurowski, A New 3-Color Criterion for Planar Graphs workshop on graph theoretic concepts in computer science. ,vol. 2573, pp. 138- 149 ,(2002) , 10.1007/3-540-36379-3_13
Canek Peláez, Jorge Urrutia, Adriana Ramírez-Viguer, Triangulations with many points of even degree canadian conference on computational geometry. pp. 103- 106 ,(2010)
Tamal Krishna Dey, Michael B Dillencourt, Subir K Ghosh, Jason M Cahill, None, Triangulating with high connectivity Computational Geometry: Theory and Applications. ,vol. 8, pp. 39- 56 ,(1997) , 10.1016/S0925-7721(96)00003-X