Lie point symmetries and conservation laws for a Gardner type system

作者: Valter Aparecido Silva Junior

DOI:

关键词:

摘要: We determine the Lie point symmetries of a Gardner type system and establish its nonlinear self-adjointness. then construct conservation laws via Ibragimov's Theorem.

参考文章(21)
Nail H. Ibragimov, Nonlinear self-adjointness in constructing conservation laws arXiv: Mathematical Physics. ,(2011)
Tang Minying Wang Ruiqi Jing Zhujun, Solitary waves and their bifurcations of KdV like equation with higher order nonlinearity Science China-mathematics. ,vol. 45, pp. 1255- 1267 ,(2002) , 10.1360/02YS9136
M L Gandarias, Weak self-adjoint differential equations Journal of Physics A. ,vol. 44, pp. 262001- ,(2011) , 10.1088/1751-8113/44/26/262001
J. Douglas Wright, Arnd Scheel, Solitary waves and their linear stability in weakly coupled KdV equations Zeitschrift für Angewandte Mathematik und Physik. ,vol. 58, pp. 535- 570 ,(2007) , 10.1007/S00033-006-6076-5
M. N. B. Mohamad, Exact solutions to the combined KdV and mKdV equation Mathematical Methods in the Applied Sciences. ,vol. 15, pp. 73- 78 ,(1992) , 10.1002/MMA.1670150202
Ryogo Hirota, Junkichi Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation Physics Letters A. ,vol. 85, pp. 407- 408 ,(1981) , 10.1016/0375-9601(81)90423-0
N H Ibragimov, Nonlinear self-adjointness and conservation laws Journal of Physics A. ,vol. 44, pp. 432002- ,(2011) , 10.1088/1751-8113/44/43/432002
Zuntao Fu, Shida Liu, Shikuo Liu, New kinds of solutions to Gardner equation Chaos Solitons & Fractals. ,vol. 20, pp. 301- 309 ,(2004) , 10.1016/S0960-0779(03)00383-7
Junkichi Satsuma, Ryogo Hirota, A Coupled KdV Equation is One Case of the Four-Reduction of the KP Hierarchy Journal of the Physical Society of Japan. ,vol. 51, pp. 3390- 3397 ,(1982) , 10.1143/JPSJ.51.3390