Efficient Secret Sharing Schemes

作者: Chunli Lv , Xiaoqi Jia , Jingqiang Lin , Jiwu Jing , Lijun Tian

DOI: 10.1007/978-3-642-22339-6_14

关键词:

摘要: We propose a new XOR-based (k,n) threshold secret SSS, where the is binary string and only XOR operations are used to make shares recover secret. Moreover, it easy extend our scheme multi-secret sharing scheme. When k closer n, computation costs much lower than existing schemes in both distribution recovery phases. In scheme, using more (≥ k) will accelerate speed.

参考文章(19)
Li Bai, A strong ramp secret sharing scheme using matrix projection world of wireless, mobile and multimedia networks. pp. 652- 656 ,(2006) , 10.1109/WOWMOM.2006.17
James L. Massey, Minimal Codewords and Secret Sharing ,(1999)
Jun Kurihara, Shinsaku Kiyomoto, Kazuhide Fukushima, Toshiaki Tanaka, A New (k,n)-Threshold Secret Sharing Scheme and Its Extension international conference on information security. pp. 455- 470 ,(2008) , 10.1007/978-3-540-85886-7_31
Florence Jessie MacWilliams, Neil James Alexander Sloane, The Theory of Error-Correcting Codes ,(1977)
Jinn-Ke Jan, Hung-Yu Chien, Yuh-Min Tseng, A Practical ( t , n ) Multi-Secret Sharing Scheme IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. ,vol. 83, pp. 2762- 2765 ,(2000)
Yvo G. Desmedt, Yair Frankel, Perfect Homomorphic Zero-Knowledge Threshold Schemes over any Finite Abelian Group SIAM Journal on Discrete Mathematics. ,vol. 7, pp. 667- 679 ,(1994) , 10.1137/S0895480192224713
Hirosuke Yamamoto, Secret sharing system using (k, L, n) threshold scheme Electronics and Communications in Japan Part I-communications. ,vol. 69, pp. 46- 54 ,(1986) , 10.1002/ECJA.4410690906
Wu Tzong-Chen, He Wei-Hua, Refereed paper: A geometric approach for sharing secrets Computers & Security. ,vol. 14, pp. 135- 145 ,(1995) , 10.1016/0167-4048(95)97047-E
Mitsuru Ito, Akira Saito, Takao Nishizeki, Secret sharing scheme realizing general access structure Electronics and Communications in Japan Part Iii-fundamental Electronic Science. ,vol. 72, pp. 56- 64 ,(1989) , 10.1002/ECJC.4430720906
G.R. Blakley, G.A. Kabatianski, Ideal perfect threshold schemes and MDS codes international symposium on information theory. pp. 488- ,(1995) , 10.1109/ISIT.1995.550475