Renal response to metabolic acidosis: Role of mRNA stabilization

作者: H. Ibrahim , Y.J. Lee , N.P. Curthoys

DOI: 10.1038/SJ.KI.5002581

关键词:

摘要: The renal response to metabolic acidosis is mediated, in part, by increased expression of the genes encoding key enzymes glutamine catabolism and various ion transporters that contribute synthesis excretion ammonium ions net production release bicarbonate ions. resulting adaptations facilitate acid partially restore systemic acid–base balance. Much this may be mediated selective stabilization mRNAs encode responsive proteins. For example, glutaminase mRNA contains a direct repeat 8-nt AU sequences function as pH-response element (pHRE). This both necessary sufficient impart pH-responsive chimeric mRNAs. pHRE also binds multiple RNA-binding proteins, including ζ-crystallin (ζ-cryst), AU-factor 1 (AUF1), HuR. onset initiates an endoplasmic reticulum (ER)-stress leads formation cytoplasmic stress granules. ζ-cryst transiently recruited granules, concurrently, HuR translocated from nucleus cytoplasm. On basis cumulative data, mechanism for proposed. hypothesis suggests experiments should define better how cells kidney sense very slight changes intracellular pH mediate essential adaptive response.

参考文章(94)
IMED-EDDINE GALLOUZI, CHRISTOPHER M. BRENNAN, JOAN A. STEITZ, Protein ligands mediate the CRM1-dependent export of HuR in response to heat shock. RNA. ,vol. 7, pp. 1348- 1361 ,(2001) , 10.1017/S1355838201016089
Barrie P. Bode, Recent Molecular Advances in Mammalian Glutamine Transport Journal of Nutrition. ,vol. 131, ,(2001) , 10.1093/JN/131.9.2475S
S.N. BHATTACHARYYA, R. HABERMACHER, U. MARTINE, E.I. CLOSS, W. FILIPOWICZ, Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harbor Symposia on Quantitative Biology. ,vol. 71, pp. 513- 521 ,(2006) , 10.1101/SQB.2006.71.038
Norman P. Curthoys, Lynn Taylor, Jason D. Hoffert, Mark A. Knepper, Proteomic analysis of the adaptive response of rat renal proximal tubules to metabolic acidosis. American Journal of Physiology-renal Physiology. ,vol. 292, ,(2007) , 10.1152/AJPRENAL.00217.2006
Nancy Kedersha, Georg Stoecklin, Maranatha Ayodele, Patrick Yacono, Jens Lykke-Andersen, Marvin J Fritzler, Donalyn Scheuner, Randal J Kaufman, David E Golan, Paul Anderson, None, Stress granules and processing bodies are dynamically linked sites of mRNP remodeling Journal of Cell Biology. ,vol. 169, pp. 871- 884 ,(2005) , 10.1083/JCB.200502088
Ramanathan M. Seshadri, Janet D. Klein, Tekla Smith, Jeff M. Sands, Mary E. Handlogten, Jill W. Verlander, I. David Weiner, Changes in subcellular distribution of the ammonia transporter, Rhcg, in response to chronic metabolic acidosis American Journal of Physiology-renal Physiology. ,vol. 290, ,(2006) , 10.1152/AJPRENAL.00459.2005
Natalie Gilks, Nancy Kedersha, Maranatha Ayodele, Lily Shen, Georg Stoecklin, Laura M Dember, Paul Anderson, None, Stress Granule Assembly Is Mediated by Prion-like Aggregation of TIA-1 Molecular Biology of the Cell. ,vol. 15, pp. 5383- 5398 ,(2004) , 10.1091/MBC.E04-08-0715
Dominique Eladari, Lydie Cheval, Fabienne Quentin, Olivier Bertrand, Isabelle Mouro, Baya Cherif-Zahar, Jean-Pierre Cartron, Michel Paillard, Alain Doucet, Régine Chambrey, Expression of RhCG, a New Putative NH3/NH4+ Transporter, along the Rat Nephron Journal of The American Society of Nephrology. ,vol. 13, pp. 1999- 2008 ,(2002) , 10.1097/01.ASN.0000025280.02386.9D
I. David Weiner, L. Lee Hamm, Molecular mechanisms of renal ammonia transport. Annual Review of Physiology. ,vol. 69, pp. 317- 340 ,(2007) , 10.1146/ANNUREV.PHYSIOL.69.040705.142215
Farrukh A. Chaudhry, Richard J. Reimer, Robert H. Edwards, The glutamine commute: take the N line and transfer to the A Journal of Cell Biology. ,vol. 157, pp. 349- 355 ,(2002) , 10.1083/JCB.200201070