Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric l 1

作者: V.A. Emelichev , K.G. Kuzmin

DOI: 10.1163/1569392042572168

关键词:

摘要:

参考文章(11)
E. N. Gordeev, Stability Analysis in Optimization Problems on Matroids in the Metric l_1 Cybernetics and Systems Analysis. ,vol. 37, pp. 251- 259 ,(2001) , 10.1023/A:1016703204124
S. Smale, Global analysis and economics V: Pareto theory with constraints Journal of Mathematical Economics. ,vol. 1, pp. 213- 221 ,(1974) , 10.1016/0304-4068(74)90013-5
Yu.N. Sotskov, V.K. Leontev, E.N. Gordeev, Some concepts of stability analysis in combinatorial optimization Discrete Applied Mathematics. ,vol. 58, pp. 169- 190 ,(1995) , 10.1016/0166-218X(93)E0126-J
E. A. Berdnikova, I. I. Eremin, L. D. Popov, Distributed Fejer Processes for Systems of Linear Inequalities and Problems of Linear Programming Automation and Remote Control. ,vol. 65, pp. 168- 183 ,(2004) , 10.1023/B:AURC.0000014714.97496.79
V. A. EMELICHEV, YU. V. STEPANISHINA, Multicriteria combinatorial linear problems: parametrisation of the optimality principle and the stability of the effective solutions Discrete Mathematics and Applications. ,vol. 11, pp. 435- 444 ,(2001) , 10.1515/DMA.2001.11.5.435
S. E. Bukhtoyarov, V. A. Emelichev, Yu. V. Stepanishina, Stability of Discrete Vector Problems with the Parametric Principle of Optimality Cybernetics and Systems Analysis. ,vol. 39, pp. 604- 614 ,(2003) , 10.1023/B:CASA.0000003509.09942.10
V.A. Emelichev, E. Girlich, Yu.V. Nikulin, D.P. Podkopaev, Stability and Regularization of Vector Problems of Integer Linear Programming Optimization. ,vol. 51, pp. 645- 676 ,(2002) , 10.1080/0233193021000030760
V. A. Emelichev, K. G. Kuz'min, A. M. Leonovich, Stability in the Combinatorial Vector Optimization Problems Automation and Remote Control. ,vol. 65, pp. 227- 240 ,(2004) , 10.1023/B:AURC.0000014719.45368.36
Harvey J. Greenberg, An Annotated Bibliography for Post-Solution Analysis in Mixed Integer Programming and Combinatorial Optimization Operations Research/Computer Science Interfaces Series. pp. 97- 147 ,(1998) , 10.1007/978-1-4757-2807-1_4
E. N. Gordeev, Stability analysis of the minimum spanning tree problem Computational Mathematics and Mathematical Physics. ,vol. 39, pp. 738- 746 ,(1999)