Relating Jack wavefunctions to WA_{k-1} theories

作者: Benoit Estienne , Raoul Santachiara

DOI: 10.1088/1751-8113/42/44/445209

关键词:

摘要: The (k,r)-admissible Jack polynomials, recently proposed as many-body wavefunctions for non-Abelian fractional quantum Hall systems, have been conjectured to be related some correlation functions of the minimal model WA_{k-1}(k+1,k+r) WA_{k-1} algebra. By studying degenerate representations theory, we provide a proof this conjecture.

参考文章(34)
P. Jacob, P. Mathieu, A quasi-particle description of the M(3,p) models Nuclear Physics. ,vol. 733, pp. 205- 232 ,(2006) , 10.1016/J.NUCLPHYSB.2005.10.033
P. Mathieu, The W_k structure of the Z_k^(3/2) models arXiv: High Energy Physics - Theory. ,(2009)
B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, A differential ideal of symmetric polynomials spanned by Jack polynomials at rβ = -(r=1)/(k+1) International Mathematics Research Notices. ,vol. 2002, pp. 1223- 1237 ,(2002) , 10.1155/S1073792802112050
Bill Sutherland, Quantum Many‐Body Problem in One Dimension: Thermodynamics Journal of Mathematical Physics. ,vol. 12, pp. 251- 256 ,(1971) , 10.1063/1.1665585
Vl.S. Dotsenko, V.A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models Nuclear Physics. ,vol. 240, pp. 312- 348 ,(1984) , 10.1016/0550-3213(84)90269-4
A.V. Litvinov, A.V. Litvinov, V.A. Fateev, V.A. Fateev, Correlation functions in conformal Toda field theory I Journal of High Energy Physics. ,vol. 2007, pp. 002- 002 ,(2007) , 10.1088/1126-6708/2007/11/002
B. Andrei Bernevig, Victor Gurarie, Steven H. Simon, Central Charge and Quasihole Scaling Dimensions From Model Wavefunctions: Towards Relating Jack Wavefunctions to W-algebras arXiv: Mesoscale and Nanoscale Physics. ,(2009) , 10.1088/1751-8113/42/24/245206