Theoretical Results on Reinforcement Learning with Temporally Abstract Options

作者: Doina Precup , Richard S. Sutton , Satinder Singh

DOI: 10.1007/BFB0026709

关键词:

摘要: … abstract reinforcement learning and present new theoretical … goals, as in reinforcement learning and Markov decision … paper, we focus on the theoretical properties of multi-time models. …

参考文章(23)
Roderic A. Grupen, Manfred Huber, Learning to coordinate controllers-reinforcement learning on a control basis international joint conference on artificial intelligence. pp. 1366- 1371 ,(1997)
Richard Earl Korf, Learning to solve problems by searching for macro-operators Pitman Advanced Pub. Program. ,(1983)
Leslie Pack Kaelbling, Hierarchical learning in stochastic domains: preliminary results international conference on machine learning. pp. 167- 173 ,(1993) , 10.1016/B978-1-55860-307-3.50028-9
Damien Ernst, Arthur Louette, Introduction to Reinforcement Learning MIT Press. ,(1998)
Satinder P. Singh, Scaling reinforcement learning algorithms by learning variable temporal resolution models international conference on machine learning. pp. 406- 415 ,(1992) , 10.1016/B978-1-55860-247-2.50058-9
Richard S. Sutton, TD Models: Modeling the World at a Mixture of Time Scales Machine Learning Proceedings 1995. pp. 531- 539 ,(1995) , 10.1016/B978-1-55860-377-6.50072-4
Symposium on the Fetus and Birth (1976 : Ciba Foundation), A Structure for Plans and Behavior ,(1977)
John E. Laird, Paul S. Rosenbloom, Allen Newell, Chunking in Soar: the anatomy of a general learning mechanism Machine Learning. ,vol. 1, pp. 11- 46 ,(1993) , 10.1023/A:1022639103969