From circle packing to covering on a sphere with antipodal constraints

作者: P. W. Fowler , T. Tarnai , Zs. Gáspár

DOI: 10.1098/RSPA.2002.0990

关键词:

摘要: The problem treated here is: how must N antipodal pairs of equal circles (spherical caps) given angular radius r be arranged on the surface a sphere so that area covered by will as large possible? Conjectured solutions this for = 4,5,7 are where varies from maximum packing to minimum covering radius. These cases exhibit sequences symmetry– and edge–number transitions in contact polyhedra, which, general, differ those unconstrained centrosymmetry is not enforced. New arrangements conjectured 4, 5 7 pairs: they hexagonal bipyramid, D 2h deltahedron cube+octahedron compound, respectively.

参考文章(10)
Tibor Tarnai, Note on packings in Grassmannian space G (3,1) Journal of Mathematical Chemistry. ,vol. 23, pp. 415- 419 ,(1998) , 10.1023/A:1019193829804
W. N. Lipscomb, Framework rearrangement in boranes and carboranes. Science. ,vol. 153, pp. 373- 378 ,(1966) , 10.1126/SCIENCE.153.3734.373
Tibor Tarnai, The observed form of coated vesicles and a mathematical covering problem. Journal of Molecular Biology. ,vol. 218, pp. 485- 488 ,(1991) , 10.1016/0022-2836(91)90691-X
P. W. Fowler, T. Tarnai, Transition from circle packing to covering on a sphere: the odd case of 13 circles Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 455, pp. 4131- 4143 ,(1999) , 10.1098/RSPA.1999.0494
John H. Conway, Ronald H. Hardin, Neil J. A. Sloane, Editors' Note on Packing Lines, Planes, etc.: Packings in Grassmannian Spaces Experimental Mathematics. ,vol. 6, pp. 175- 175 ,(1997) , 10.1080/10586458.1997.10504605
John H. Conway, Ronald H. Hardin, Neil J. A. Sloane, Packing lines, planes, etc.: packings in Grassmannian spaces Experimental Mathematics. ,vol. 5, pp. 139- 159 ,(1996) , 10.1080/10586458.1996.10504585
T. Tarnai, Zs. Gáspár, Covering a sphere by equal circles, and the rigidity of its graph Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 110, pp. 71- 89 ,(1991) , 10.1017/S0305004100070134
Transition from Spherical Circle Packing to Covering: Geometrical Analogues of Chemical Isomerization Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 452, pp. 2043- 2064 ,(1996) , 10.1098/RSPA.1996.0108
D. A. Kottwitz, The densest packing of equal circles on a sphere Acta Crystallographica Section A. ,vol. 47, pp. 158- 165 ,(1991) , 10.1107/S0108767390011370
L. Fejes Tóth, Distribution of points in the elliptic plane Acta Mathematica Hungarica. ,vol. 16, pp. 437- 440 ,(1965) , 10.1007/BF01904849