Bayesian artificial intelligence

作者: Kevin Korb , Ann E. Nicholson

DOI:

关键词:

摘要: Bayesian Reasoning. Introduction to Networks. Inference in Network Applications. Planning and Decision-Making. Applications II. Learning Networks I. Causality vs. Probability. Knowledge Engineering with Application Software.

参考文章(225)
Ross D. Shachter, Daniel L. Rubin, Elizabeth S. Burnside, A Bayesian network for mammography. american medical informatics association annual symposium. pp. 106- 110 ,(2000)
Kevin B. Korb, Chris S. Wallace, Julian R. Neil, Learning Bayesian networks with restricted causal interactions uncertainty in artificial intelligence. pp. 486- 493 ,(1999)
Thomas L. Dean, Michael P. Wellman, Planning and Control ,(1991)
M. A. Shwe, D. E. Heckerman, M. Henrion, E. J. Horvitz, H. P. Lehmann, G. F. Cooper, B. Middleton, Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. I. The probabilistic model and inference algorithms. Methods of Information in Medicine. ,vol. 30, pp. 241- 255 ,(1991) , 10.1055/S-0038-1634846
Bruno de Finetti, Foresight: Its Logical Laws, Its Subjective Sources Springer, New York, NY. pp. 134- 174 ,(1992) , 10.1007/978-1-4612-0919-5_10
Stephen F. Smith, Flexible learning of problem solving heuristics through adaptive search international joint conference on artificial intelligence. pp. 422- 425 ,(1983)
Kristian G. Olesen, Finn V. Jensen, Frank Jensen, Stig K. Andersen, HUGIN: a shell for building Bayesian belief universes for expert systems international joint conference on artificial intelligence. pp. 1080- 1085 ,(1989)
Michael I Jordan, None, An introduction to linear algebra in parallel distributed processing Parallel distributed processing: explorations in the microstructure of cognition, vol. 1. pp. 365- 422 ,(1986)
Kevin B. Korb, Honghua Dai, Chris S. Wallace, Causal Discovery via MML. international conference on machine learning. pp. 516- 524 ,(1996)