Genomic Prediction with Genotype by Environment Interaction Analysis for Kernel Zinc Concentration in Tropical Maize Germplasm

作者: Edna K. Mageto , Jose Crossa , Paulino Pérez-Rodríguez , Thanda Dhliwayo , Natalia Palacios-Rojas

DOI: 10.1534/G3.120.401172

关键词:

摘要: Zinc (Zn) deficiency is a major risk factor for human health, affecting about 30% of the world’s population. To study potential genomic selection (GS) maize with increased Zn concentration, an association panel and two doubled haploid (DH) populations were evaluated in three environments. Three prediction models, M (M1: Environment + Line, M2: Line Genomic, M3: Genomic x Environment) incorporating main effects (lines genomic) interaction between environment (G E) assessed to estimate ability (rMP) each model. Two distinct cross-validation (CV) schemes simulating breeding scenarios used. CV1 predicts performance newly developed lines, whereas CV2 lines tested sparse multi-location trials. Predictions ranged from -0.01 0.56 DH1, 0.04 0.50 DH2 -0.001 0.47 panel. For CV2, rMP values 0.67 0.71 0.40 0.64 0.72 The model which included G E had highest average both (0.39 0.44) (0.71 0.51) population, respectively. These results suggest that GS has accelerate enhanced kernel concentration by facilitating superior genotypes.

参考文章(79)
R.K. Sharma, B.K. Mishra, S. Nagarajan, Plant breeding: A component of public health strategy Current Science. ,vol. 86, pp. 1210- 1215 ,(2004)
F Hossain, A Kumar, H S Gupta, B M Prasanna, P K Agrawal, S K Guleria, R K Chahota, P Kumar, Analysis of genetic variability and genotype × year interactions on kernel zinc concentration in selected Indian and exotic maize (Zea mays) genotypes Indian Journal of Agricultural Sciences. ,vol. 83, ,(2013)
Gustavo de los Campos, Paulino Pérez, Ana I. Vazquez, José Crossa, Genome-enabled prediction using the BLR (Bayesian Linear Regression) R-package Methods of Molecular Biology. ,vol. 1019, pp. 299- 320 ,(2013) , 10.1007/978-1-62703-447-0_12
M. Chakraborti, A. M. Singh, F. Hossain, B. M. Prasanna, S. K. Guleria, Genetic evaluation of kernel Fe and Zn concentrations and yield performance of selected maize (Zea mays L.) genotypes. Range Management and Agroforestry. ,vol. 30, pp. 109- 114 ,(2009)
Marianne Bänziger, Jennifer Long, The Potential for Increasing the Iron and Zinc Density of Maize through Plant-breeding: Food and Nutrition Bulletin. ,vol. 21, pp. 397- 400 ,(2000) , 10.1177/156482650002100410
F. Hossain, H.S. Gupta, B.M. Prasanna, P.K. Agrawal, S. Saha, S.K. Guleria, S.K. Jaiswal, Genetic variability and stability for kernel iron and zinc concentration in maize (Zea mays L.) genotypes Indian Journal of Genetics and Plant Breeding. ,vol. 72, pp. 421- 428 ,(2012)
T. H. E. Meuwissen, M. E. Goddard, B. J. Hayes, Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps Genetics. ,vol. 157, pp. 1819- 1829 ,(2001) , 10.1093/GENETICS/157.4.1819
Paulino Pérez, Gustavo de los Campos, Genome-Wide Regression and Prediction with the BGLR Statistical Package Genetics. ,vol. 198, pp. 483- 495 ,(2014) , 10.1534/GENETICS.114.164442
Jeffrey C. Glaubitz, Terry M. Casstevens, Fei Lu, James Harriman, Robert J. Elshire, Qi Sun, Edward S. Buckler, TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline PLOS ONE. ,vol. 9, ,(2014) , 10.1371/JOURNAL.PONE.0090346
Alison R. Bentley, Marco Scutari, Nicolas Gosman, Sebastien Faure, Felicity Bedford, Phil Howell, James Cockram, Gemma A. Rose, Tobias Barber, Jose Irigoyen, Richard Horsnell, Claire Pumfrey, Emma Winnie, Johannes Schacht, Katia Beauchêne, Sebastien Praud, Andy Greenland, David Balding, Ian J. Mackay, Applying association mapping and genomic selection to the dissection of key traits in elite European wheat Theoretical and Applied Genetics. ,vol. 127, pp. 2619- 2633 ,(2014) , 10.1007/S00122-014-2403-Y