An FCT finite element scheme for ideal MHD equations in 1D and 2D

作者: Melanie Basting , Dmitri Kuzmin

DOI: 10.1016/J.JCP.2017.02.051

关键词:

摘要: Abstract This paper presents an implicit finite element (FE) scheme for solving the equations of ideal magnetohydrodynamics in 1D and 2D. The continuous Galerkin approximation is constrained using a flux-corrected transport (FCT) algorithm. underlying low-order constructed Rusanov-type artificial viscosity operator based on scalar dissipation proportional to fast wave speed. accuracy solution can be improved shock detector which makes it possible prelimit added monotonicity-preserving iterative manner. At FCT correction step, changes conserved quantities are limited way guarantees positivity preservation density thermal pressure. Divergence-free magnetic fields extracted projections predictor into staggered spaces forming exact sequences. In 2D case, field projected space Raviart–Thomas elements. Numerical studies standard test problems performed verify ability proposed algorithms enforce relevant constraints applications MHD flows.

参考文章(42)
Stefan Turek, Dmitri Kuzmin, Algebraic Flux Correction III. Incompressible Flow Problems fundamentals of computation theory. pp. 251- 296 ,(2005) , 10.1007/3-540-27206-2_8
Robert C. Kirby, Anders Logg, Marie E. Rognes, Andy R. Terrel, Common and unusual finite elements Automated Solution of Differential Equations by the Finite Element Method. pp. 95- 119 ,(2012) , 10.1007/978-3-642-23099-8_3
Jean Donea, Antonio Huerta, Finite Element Methods for Flow Problems ,(2003)
Dmitri Kuzmin, Matthias Möller, Algebraic Flux Correction I. Scalar Conservation Laws fundamentals of computation theory. pp. 155- 206 ,(2005) , 10.1007/3-540-27206-2_6
Jean Roberts, Jean-Marie Thomas, Mixed and hybrid finite element methods Springer-Verlag. ,(1991) , 10.1007/978-1-4612-3172-1
C.A.J. Fletcher, The group finite element formulation Computer Methods in Applied Mechanics and Engineering. ,vol. 37, pp. 225- 244 ,(1983) , 10.1016/0045-7825(83)90122-6
J.C. Adam, A.Gourdin Serveniere, J.C. Nedelec, P.A. Raviart, Study of an implicit scheme for integrating Maxwell's equations Computer Methods in Applied Mechanics and Engineering. ,vol. 22, pp. 327- 346 ,(1980) , 10.1016/0045-7825(80)90004-3
Marie E. Rognes, Robert C. Kirby, Anders Logg, Efficient Assembly of $H(\mathrm{div})$ and $H(\mathrm{curl})$ Conforming Finite Elements SIAM Journal on Scientific Computing. ,vol. 31, pp. 4130- 4151 ,(2010) , 10.1137/08073901X
Steven T Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids Journal of Computational Physics. ,vol. 31, pp. 335- 362 ,(1979) , 10.1016/0021-9991(79)90051-2