Information Geometry and Evolutionary Game Theory

作者: Marc Harper

DOI:

关键词:

摘要: The Shahshahani geometry of evolutionary game theory is realized as the information simplex, deriving from Fisher metric manifold categorical probability distributions. Some essential concepts in are information-theoretically. Results extended to Lotka-Volterra equation and multiple population systems.

参考文章(9)
William H. Sandholm, Population Games and Evolutionary Dynamics ,(2010)
Akio Fujiwara, Shun-ichi Amari, Gradient systems in view of information geometry Physica D: Nonlinear Phenomena. ,vol. 80, pp. 317- 327 ,(1995) , 10.1016/0167-2789(94)00175-P
Karl Sigmund, Josef Hofbauer, Evolutionary games and population dynamics ,(1998)
Klaus Ritzberger, Jorgen W. Weibull, EVOLUTIONARY SELECTION IN NORMAL-FORM GAMES Econometrica. ,vol. 63, pp. 1371- 1399 ,(1995) , 10.2307/2171774
Ethan Akin, Exponential families and game dynamics Canadian Journal of Mathematics. ,vol. 34, pp. 374- 405 ,(1982) , 10.4153/CJM-1982-025-4