New periclase-spinel refractories from densely sintered high purity magnesite and new synthetic compositions based on spinel. Part 1. Study of mineral composition, microstructure, thermal expansion, and ultimate strength in compression

作者: P. G. Lampropoulou , C. G. Katagas , I. Iliopoulos , D. Papoulis

DOI: 10.1007/S11148-013-9517-7

关键词:

摘要: Six specimens of magnesia-spinel material are made under laboratory conditions. Specimens prepared at 1600°C from sintered magnesite and three different compositions based on spinel, previously synthesized 1760 °C. Sintered spinel properties provided. Raw in relation to content within them, apparent density, additions introduced, also their effect final product, shown. Three forms product contain 8 – 11 wt.% Al2O3, the rest 19 21 Al2O3. Photographs taken a scanning electron microscope, results microstructural analysis raw point formation direct periclase–periclase periclase–spinel bonds, secondary calcium aluminate silicate phases. Secondary is detected form solution periclase, grain boundaries refractories. On basis petrographic criteria (mineral composition, microstructure), linear thermal expansion coefficient (LTEC) ultimate strength compression for materials, authors this article propose most suitable with respect quality testing high-temperature branches industry.

参考文章(16)
Jacek Szczerba, Zbigniew Pędzich, Małgorzata Nikiel, Dominika Kapuścińska, Influence of raw materials morphology on properties of magnesia-spinel refractories Journal of The European Ceramic Society. ,vol. 27, pp. 1683- 1689 ,(2007) , 10.1016/J.JEURCERAMSOC.2006.04.145
Ritwik Sarkar, S.K Das, G Banerjee, Effect of additives on the densification of reaction sintered and presynthesised spinels Ceramics International. ,vol. 29, pp. 55- 59 ,(2003) , 10.1016/S0272-8842(02)00089-5
Kiyoshi Gotod, William E. Lee, The “Direct Bond” in Magnesia Chromite and Magnesia Spinel Refractories Journal of the American Ceramic Society. ,vol. 78, pp. 1753- 1760 ,(1995) , 10.1111/J.1151-2916.1995.TB08885.X
T. Mimani, Instant synthesis of nanoscale spinel aluminates Journal of Alloys and Compounds. ,vol. 315, pp. 123- 128 ,(2001) , 10.1016/S0925-8388(00)01262-7
Zhi-Zhan Chen, Er-Wei Shi, Hua-Wei Zhang, Yong Zhang, Xiang-Biao Li, Xue-Chao Liu, Bing Xiao, Hydrothermal Synthesis of Magnesium Aluminate Platelets Journal of the American Ceramic Society. ,vol. 89, pp. 3635- 3637 ,(2006) , 10.1111/J.1551-2916.2006.01289.X
I. G. Maryasev, V. N. Koptelov, Yu. A. Dmitrienko, F. S. Kaplan, M. Yu. Koreshkova, Effect of Precursor Raw Materials on the Structure of Fused Alumomagnesian Spinel Refractories and Industrial Ceramics. ,vol. 44, pp. 405- 410 ,(2003) , 10.1023/B:REFR.0000016779.02545.4C
Cemail Aksel, Brian Rand, Frank L Riley, Paul D Warren, Mechanical properties of magnesia-spinel composites Journal of The European Ceramic Society. ,vol. 22, pp. 745- 754 ,(2002) , 10.1016/S0955-2219(01)00373-9
Baris Sahin, Cemail Aksel, Developments on the mechanical properties of MgO–MgAl2O4 composite refractories by ZrSiO4–3 mol% Y2O3 addition Journal of The European Ceramic Society. ,vol. 32, pp. 49- 57 ,(2012) , 10.1016/J.JEURCERAMSOC.2011.07.024
Ali Saberi, Farhad Golestani-Fard, Monika Willert-Porada, Zahra Negahdari, Christian Liebscher, Benjamin Gossler, A novel approach to synthesis of nanosize MgAl2O4 spinel powder through sol–gel citrate technique and subsequent heat treatment Ceramics International. ,vol. 35, pp. 933- 937 ,(2009) , 10.1016/J.CERAMINT.2008.03.011
M. A. Serry, A. G. M. Othman, L. G. Girgis, W. Weisweiler, Phase equilibrium, microstructure and properties of some magnesite-chromite refractories Journal of Materials Science. ,vol. 31, pp. 4913- 4920 ,(1996) , 10.1007/BF00355880