PolyACO+: a multi-level polygon-based ant colony optimisation classifier

作者: Morten Goodwin , Torry Tufteland , Guro Ødesneltvedt , Anis Yazidi

DOI: 10.1007/S11721-017-0145-6

关键词:

摘要: Ant colony optimisation (ACO) for classification has mostly been limited to rule-based approaches where artificial ants walk on datasets in order extract rules from the trends data, and hybrid which attempt boost performance of existing classifiers through guided feature reductions or parameter optimisations. A recent notable example that is distinct mainstream PolyACO, a proof-of-concept polygon-based classifier resorts ACO as technique create multi-edged polygons class separators. Despite possessing some promise, PolyACO significant limitations, most notably, fact supporting only two classes, including features per class. This paper introduces PolyACO+, an extension three ways: (1) PolyACO+ supports classifying multiple (2) dimensions enabling with more than features, (3) substantially reduces training time compared by using concept multi-levelling. empirically demonstrates these updates improve algorithm such degree it becomes comparable state-of-the-art techniques SVM, neural networks, AntMiner+.

参考文章(33)
Shimantika Sharma, Shameek Ghosh, Narayanan Anantharaman, Valadi K. Jayaraman, Simultaneous Informative Gene Extraction and Cancer Classification Using ACO-AntMiner and ACO-Random Forests Springer, Berlin, Heidelberg. pp. 755- 761 ,(2012) , 10.1007/978-3-642-27443-5_86
Emmanuel Sapin, Ed Keedwell, Tim Frayling, Ant colony optimisation of decision tree and contingency table models for the discovery of gene–gene interactions Iet Systems Biology. ,vol. 9, pp. 218- 225 ,(2015) , 10.1049/IET-SYB.2015.0017
Luís Miguel de Campos, José Miguel Puerta Castellón, José Antonio Gámez Martín, Learning bayesian networks by ant colony optimisation: searching in two different spaces soft computing. ,vol. 9, pp. 251- 268 ,(2002)
Bing Xue, Mengjie Zhang, Will N. Browne, Particle swarm optimisation for feature selection in classification soft computing. ,vol. 18, pp. 261- 276 ,(2014) , 10.1016/J.ASOC.2013.09.018
Thomas Stützle, Holger H. Hoos, – Ant System Future Generation Computer Systems. ,vol. 16, pp. 889- 914 ,(2000) , 10.1016/S0167-739X(00)00043-1
Laurens Van Der Maaten, Accelerating t-SNE using tree-based algorithms Journal of Machine Learning Research. ,vol. 15, pp. 3221- 3245 ,(2014) , 10.5555/2627435.2697068
Alex J. Smola, Bernhard Schölkopf, A tutorial on support vector regression Statistics and Computing. ,vol. 14, pp. 199- 222 ,(2004) , 10.1023/B:STCO.0000035301.49549.88
Jun-Zhong JI, Hong-Xun ZHANG, Ren-Bing HU, Chun-Nian LIU, A Bayesian Network Learning Algorithm Based on Independence Test and Ant Colony Optimization Acta Automatica Sinica. ,vol. 35, pp. 281- 288 ,(2009) , 10.1016/S1874-1029(08)60077-4
Thannob Aribarg, Siriporn Supratid, Chidchanok Lursinsap, Optimizing the modified fuzzy ant-miner for efficient medical diagnosis Applied Intelligence. ,vol. 37, pp. 357- 376 ,(2012) , 10.1007/S10489-011-0332-X
Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk, Wen-mei W. Hwu, Optimization principles and application performance evaluation of a multithreaded GPU using CUDA Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming - PPoPP '08. pp. 73- 82 ,(2008) , 10.1145/1345206.1345220